
USOO7325082B1

(12) United States Patent (10) Patent No.: US 7,325,082 B1
Schibinger et al. (45) Date of Patent: Jan. 29, 2008

(54) SYSTEM AND METHOD FOR 5,560,027 A * 9/1996 Watson et al. 712/12
GUARANTEENG TRANSACTIONAL 5,640.519 A * 6/1997 Langendorf et al. T10, 111
FARNESS AMONG MULTIPLE 5,914,935 A * 6/1999 Saito 370,229
REQUESTERS 6,029,219 A * 2/2000 Michizono et al. 710/111

6,996,559 B1* 2/2006 Beshai 707/6
(75) Inventors: Joseph S. Schibinger, Phoenixville, PA 7,158,510 B1* 1/2007 Golla et al. 370,374

SS Josh D. Collier, Royersford, PA 2002/0176431 A1* 11, 2002 Golla et al. ... 370,412

(73) Assignee: Unisys Corporation, Blue Bell, PA
(US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner Mark H. Rinehart
patent is extended or adjusted under 35 Assistant Examiner Jeremy S Cerullo
U.S.C. 154(b) by 160 days. (74) Attorney, Agent, or Firm Richard J. Gregson;

Synnestvedt & Lechner, LLP
(21) Appl. No.: 10/926,226

57 ABSTRACT
(22) Filed: Aug. 25, 2004 (57)

(51) a",3/00 (2006.01) A system sh for girls isional fairness among multiple requesters contending for a common
ge. 3. 3.08: resource in a cache-coherent multiprocessor system is

described. Batch processing is used to control servicing of
(52) U.S. Cl. 710/111; 710/117; '85 multiple requests made by multiple requesters (such as

processors) of a common resource in a cache-coherent
(58) Field of Classification Search 710/111, multiprocessor System. Specifically, identification numbers

S lication file f 117, R 370/369 are assigned to requests as they are received from the
ee application file for complete search history. multiple requesters. The identification numbers are then

(56) References Cited used in conjunction with batch processing to prioritize and

5,519,837 A *

U.S. PATENT DOCUMENTS

5/1996 Tran T10, 111

ld Generator

202

r Counter(s)
2O7

Request
Assignment

204

Controller

- - - -
Compare

identification
Number Associated
With Request to
Siding Window

Unit - - - - ... Authorization

guarantee servicing of the requests.

22 Claims, 6 Drawing Sheets

Window

218

Counter(s)
235

\| Transaction

Retry
Notification

U.S. Patent Jan. 29, 2008 Sheet 1 of 6 US 7,325,082 B1

Multiprocessor System
Requester 102

Common
Resource

Requester
10

Controller

Requester

Requester

104(N)

Fig. 1

U.S. Patent Jan. 29, 2008 Sheet 2 of 6 US 7,325,082 B1

Pointer 222

Pointer 224

D Generator Controller reiseries
108 Sliding

202 Window

218

Counter(s) 8
2O7 Counter(s)

- - - - - - C . 235 Ompare .
ldentification

Number ASSociated
Request With Request to

Assignment Sliding Window .
Unit - - - - or

204

Transaction

Authorize
Request Notification

Fig. 2A

U.S. Patent Jan. 29, 2008 Sheet 3 of 6 US 7,325,082 B1

Pointer 222

Controller
D Generator 108

202

Counter(s)
2O7

Request Authorize
Assignment Request Notification

Unit

204

Rest Fig. 2B

U.S. Patent Jan. 29, 2008 Sheet 4 of 6 US 7,325,082 B1

204 2O2 108

Batch Size
(Configurable

Redister gisters

- -- -
-- - - - - - - - ----------

Oldest
Batch

Detector
Pointer

315

Batch Y.
Counter(s):

312

Batch D
In-Range
Detector

318

Authorize

Conflict
Control

32O

Retry
Requests Notification

Fig. 3

U.S. Patent Jan. 29, 2008 Sheet S of 6 US 7,325,082 B1

Requester
104. New Request

Request
Request

Transaction

TracketA04
Request

D Number

Retry Response
4.18

Fig. 4

U.S. Patent Jan. 29, 2008 Sheet 6 of 6 US 7,325,082 B1

/ 500

Receive Request From a Requester

504
New

New Or Request Assign ID Number
Retried? - to Request

Retried 508

D Number in
Sliding-Window?

issue Retry
Notification

Authorize Servicing of Request
(Assuming No Other Conflicts)

Advance The Sliding-Window After A
Request With An Oldest Pending
Pending ID Number (Within the
Sliding-Window) is Serviced

514

US 7,325,082 B1
1.

SYSTEMAND METHOD FOR
GUARANTEENG TRANSACTIONAL

FARNESS AMONG MULTIPLE
REQUESTERS

TECHNICAL FIELD

The present invention relates to multiprocessor Systems,
and more particularly, to guaranteeing fairness of transac
tions between multiple requesters in a cache-coherent mul
tiprocessor System.

BACKGROUND

A multiprocessor System is typically any class of com
puter systems that utilizes more than one processor to
execute instructions or perform operations. In most multi
processor Systems there are common resources in which the
processors must rely, such as memory and input/output
devices. When processors contend for such resources, the
processors typically send requests to the common resource
requesting that the common resource perform some type of
transaction, such as performing a read operation, a write
operation, or some other processing operation. Ideally, the
common resource will immediately execute the requests as
the requests are received. However, in most cases, the
common resource will receive a large Volume of requests at
nearly the same time and cannot immediately process the
requests.
Many approaches have been developed to attempt to solve

this problem. For instance, one common solution is for the
common resource to buffer all incoming requests and service
them in the order they are received (or some other order
depending on priority of the requests). The problem with this
approach is that as the number of processors used in larger
multiprocessor Systems increase the number of outstanding
requests also tends to increase, sometimes exponentially,
making the buffer size too large, expensive, and impractical
to implement for many applications.

Another common approach is to use a controller to control
access to the common resource. For example, a controller,
acting on behalf of the common resource, may notify certain
requesters to retry their requests at a later time, because the
common resource is currently unable to immediately process
their requests (i.e., the common resource may be too busy or
there may be a conflict). The problem with this approach is
that the controller may unintentionally deny a particular
transaction from continually being processed. In other
words, a situation may arise in which a particular transac
tion, under certain circumstances, may continually get
retried and cease to make forward progress, thus perma
nently preventing the system or a portion of the system from
making forward progress, known as a "live-lock.”
Most controllers designed today attempt to prevent a

live-lock situation from occurring by using a protocol that
guarantees fairness of multiple transactions. Often these
protocols are very complicated, expensive to implement, and
must be custom-designed on a system-by-system basis.
Additionally, many such controllers are prone to glitches and
fail to guarantee fairness of transactions between multiple
requesters, inadvertently enabling a live-lock situation to
occur, among other problems.

SUMMARY

To overcome the inefficiencies and problems described in
the Background section, the following description intro

10

15

25

30

35

40

45

50

55

60

65

2
duces the broad concept of using a sliding-window (i.e., a
fixed-range of identification numbers that may include one
or more batches of identification numbers) to control ser
vicing of multiple requests from multiple requesters directed
to a common resource in a cache-coherent multiprocessor
system. Specifically, identification numbers are assigned to
requests as they are received from the multiple requesters.
The identification numbers are then used in conjunction with
the sliding-window to prioritize and guarantee servicing of
the requests.

In one exemplary methodological implementation, iden
tification numbers are assigned to requests made by request
ers. The identification numbers are compared to a batch of
identification numbers currently being serviced by a com
mon resource. One or more of the requests can be authorized
for service if the identification numbers assigned to the one
or more requests are within the batch of identification
numbers currently being serviced by the common resource.
Otherwise requests not authorized for servicing are returned
to the particular requesters that sent the requests to be retried
by the particular requesters at a later time. Requests with
identification numbers associated with a Subsequent batch of
identification numbers are generally not authorized to be
serviced, until all requests with assigned identification num
bers within the batch of identification numbers currently
being serviced have been serviced by the common resource.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is explained with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number identifies the figure in which the refer
ence number first appears.

FIG. 1 illustrates an exemplary multiprocessor System in
which multiple requesters are serviced by one or more
COO CSOUCS.

FIG. 2A is a block diagram illustrating a logical perspec
tive of a controller.

FIG. 2B
batches.

FIG. 3 is a block diagram of the controller showing how
select elements from FIGS. 2A and 2B can be implemented
according to another exemplary implementation.

FIG. 4 shows select elements of a requester.
FIG. 5 illustrates a method for guaranteeing fairness of

transactions between multiple requestors in a multiprocessor
system.

shows identification numbers contained in

DETAILED DESCRIPTION

Exemplary Computing Environment
FIG. 1 illustrates an exemplary multiprocessor system

102 in which multiple requesters 104(1), 104(2)
104(3), . . . , 104(N) are serviced by one or more common
resources 106. Multiprocessor system 102 generally repre
sents any computer system that utilizes more than one
processor to execute instructions or perform operations.
Multiprocessor system 102 may refer to, but is not limited
to, servers, routers, mainframe computers, enterprise serv
ers, and other devices that utilize more than one processor.
In one implementation, multiprocessor system 102 uses
symmetrical multiprocessing in which processors are free to
perform any task assigned to them, and idle processors can
be added to improve performance when there are increased
loads. Alternatively, in another implementation, it is possible

US 7,325,082 B1
3

for multiprocessor System 102 to use asymmetrical multi
processing, in which each processor is usually assigned a
fixed task.

Requesters, referred to generally as reference number
104, generally represent any entity within multiprocessor
system 102 that execute various instructions to control the
operation of the multiprocessor system 102 and communi
cate with other electronic and computing devices. For
example, in one implementation, requesters represent pro
cessors, including but not limited to, proprietary processors,
microprocessors, state-machines, programmable logic
devices, and other processing engines.

Requesters 104 generally share one or more common
resources 106. A common resource is generally a device in
multiprocessor system 102 that requesters 104 rely to per
form shared transactions. For instance, a common resource
may represent memory, input/output devices, or other lim
ited resources relied upon by multiple requesters. When
requesters 104 contend for common resources 106, request
ers typically send requests (i.e., instructions or messages) to
the particular common resource requesting that the common
resource perform Some type of transaction, such as perform
ing a read operation, a write operation, or various other
processing operations.
A controller 108 acts as responding agent on behalf of the

common resource 106 to requests received from requesters
104. That is, controller 108 is responsible for providing fair
access to requests received from requesters 104 contending
for common resource 106, although it is appreciated that
controller 108 may have other responsibilities in a multi
processor system 102.

Controller 108 assigns identification numbers to requests
as they are received from the multiple requesters. The
identification numbers are then used in conjunction with a
sliding-window (i.e., a fixed-range of identification numbers
that may include one or more batches of identification
numbers) to prioritize and guarantee servicing of the
requests. Controller 108, acting on behalf of common
resource 106, may notify certain requesters to retry their
requests if the common resource is unable to process their
requests. Even though the requests may need to be retired at
later time, the sliding-window guarantees that all requests
will eventually be serviced, and hence, prevents a live-lock
situation from occurring.

In one implementation, controller 108 represents a
responding agent acting on behalf of memory (shown as
common resource 106) in a cache-coherent multiprocessor
system. “Cache coherency’ means when requesters 104
access memory, controller 108, in addition to providing fair
access to requests received from requesters 104, ensures that
only one requester at a time is capable of writing data so that
each requester 104 receives the most recent version of the
data when requesting data. In other words, by participating
in cache coherency each requester 104 has access to the
same data, and controller 108 ensures that the most recent
data is not accidentally overwritten or erased by requesters
attempting to access the same data.

In another implementation, controller 108 is an I/O con
troller that controls the flow of data to and from I/O devices
(shown as common resource 106). That is, controller 108 is
used as part of an interface between I/O devices and request
ers 104. In this implementation, the pertinent responsibility
of controller 108 is to provide fair access to requests
received from requesters 104 made to I/O devices.

Although specific examples herein may refer to controller
108 being a responding agent on behalf of either memory or
I/O devices, such examples are not meant to limit the scope

10

15

25

30

35

40

45

50

55

60

65

4
of the claims or the description, but are meant to provide a
specific understanding of the described implementations.

It is also to be appreciated that additional components can
be included in multiprocessor system 102. For example,
additional processors or storage devices, additional I/O
interfaces, and so forth may be included in multiprocessor
system 102. It is also recognized that there are a variety of
system busses, point-to-point connections, and various other
connection configurations that may be used to connect the
various components within multiprocessor system 102 and
for purposes of this discussion any of these variety of
configurations may be included.

Having introduced a computing environment, it is now
possible to describe controller 108 more particularly.
System Overview From the Controller's Perspective (Re
sponding Agent)

FIG. 2A is a block diagram illustrating a logical perspec
tive of controller 108. According to this implementation,
controller 108 includes an identification generator 202, a
request assignment unit 204, a sliding-window 218, and a
transaction authorization unit 208.

Identification generator 202 includes one or more
counters 207 configured to generate a continuous ring of
identification numbers 0-to-N (referred to generally as ref
erence number 210) in a sequential order, Such as from a
lowest-identification number 0 to a highest identification
number N. The highest-identification number N and the
lowest identification number 0 of the identification numbers
are contiguous, meaning once the one or more counters 207
reach N, the one or more counters 207 reset back to Zero and
start counting again.

In an alternative implementation, it is possible for one or
more counters to move in a counter clockwise direction
starting with highest identification number N and decrement.
Additionally, the one or more counters can be set to any
value and do not necessarily have to start with the highest or
lowest values for the one or more counters.

Alternatively, the one or more counters 207 could be
replaced with a memory device having a hard-coded set of
identification numbers that form a continuous ring of iden
tification numbers 210. Accordingly, it should be well appre
ciated by anyone skilled in the art that the identification
numbers are shown as a continuous ring of identification
numbers 210 from a logical viewpoint and that the numbers
can be generated by one or more counters or by other means.

Request assignment unit 204 uses the number generated
by identification generator 202 to assign to new requests
received from requesters 104. That is, each time a new
request is received by controller 108, request assignment
unit 204 reads the current identification number indicated by
the one or more counters 207. Once the identification
number is assigned to the new request, the one or more
counters 207 are incremented. A new request means that this
the first time a particular requester is sending the request and
the request was not previously sent as a retry response. A
retried request means the request was previously transmitted
to common resource 106, but the controller 108 instructed
the particular requester that issued the request to retry the
request at a later time due to a conflict or another reason.
Once an identification number is assigned to the request, the
identification number remains associated with the request
until the request is serviced by common resource 106.

Whether the request is new or retried, the identification
number can be embedded in a portion (i.e., such as a header)
of a particular request. It is noted that each identification
number assigned to requests may include any indicia that

US 7,325,082 B1
5

indicates a sequence and/or priority of the request. In one
implementation, an identification number may only include
a number 0-to-N, which is assigned to the request in the
order in which the request was received by controller 108.

Alternatively, an identification number may include addi
tional information such as a batch number indicating that the
identification number is associated with a group (i.e., batch)
of identification numbers. For example, referring to FIG. 2B
identification generator 202 can also use one or more
counters 207 to generate a continuous ring of identification
numbers 210 that are contained in batches 0-to-N in a
sequential order, Such as from a lowest batch number 0, to
a highest batch number N. The highest batch number N and
the lowest batch number 0 are contiguous, meaning once the
one or more counters 207 reach N (assuming the counters
are incrementing), the one or more counters 207 reset back
to Zero and start counting again. Each batch includes a group
of identification numbers from 0-to-M, where M represents
any number greater than 1. The one or more counters 207
can also generate a set of identification numbers per batch.
Typically, the batch size is fixed, but it is also possible to
dynamically change the batch size during operation allowing
system performance to be tuned to changes in latency,
number of requesters, and other systems variables. Using
batch IDs tends to minimize the size of the filed that the ID
occupies in a retry request and the Subsequent re-issued
(retried) request).

Referring back to FIG. 2A, sliding-window 218 repre
sents a fixed-range of identification numbers 220 that
advance through the continuous ring of identification num
bers 210. The sliding-window 218 essentially uses two
pointers 222 and 224 that are generated by one or more
counters 235. Pointers 222 and 224 typically remain a fixed
distance from each other and each moving an identical
number of identification numbers at a time when advancing
through the continuous ring of identification numbers 210.
The range of identification numbers forming sliding-win
dow 218 (the number of identification between pointers 222
and 224) are typically predetermined, but may be dynami
cally changed during operation allowing system perfor
mance to be tuned to changes in latency, number of request
ers, and other systems variables.

Sliding-window 218 advances through continuous ring of
identification numbers 210 in sequential order one or more
identification numbers at a time, after at least an oldest
pending request is processed by common resource 106. For
example, Suppose that sliding-window 218 spans five iden
tification numbers between points 222 and 224 and sliding
window 218 is currently located between identification
numbers (11) and (15), inclusively. Also, suppose that
requests with assigned identification numbers (12, 13, 14.
and 15) have been processed, but the request with the oldest
pending identification number (11) has still not been pro
cessed by common resource 106. Sliding-window 218 can
not advance until the request with an assigned identification
number of (11) is processed. Once the request with the oldest
pending identification number (11) is processed, sliding
window 218 can advance by a maximum five consecutive
identification numbers at a time. That is, pointer 222 will
advance from identification number (11) to identification
number (16) and pointer 224 will advance from identifica
tion number (15) to identification number (20).

Referring to FIG. 2B, it is noted that fixed-range of
identification numbers 220 that are indicated by sliding
window 218 may include one or more batches. For instance,
referring to continuous ring of identification numbers 210,
sliding-window 218 advances through the continuous ring

10

15

25

30

35

40

45

50

55

60

65

6
of identification numbers 210 one or more consecutive
batches at a time. Allowing sliding-window 218 to span two
or more consecutive batches at a time may improve perfor
mance. Nevertheless, the maximum number of consecutive
batches forming sliding-window 218 is less than or equal to
the maximum number of batches in the continuous ring of
identification numbers 210, in order to guarantee fairness.

Referring back to FIG. 2A, transaction authorization unit
208 is configured to authorize a particular request to be
serviced by common resource 106, if the identification
number associated with the particular request is within the
fixed-range of identification numbers indicated by sliding
window 218 (whether or not using batch processing). That
is, transaction authorization unit 208 compares an identifi
cation number associated with a particular request to sliding
window 218. Transaction authorization 208 authorizes the
request for servicing by common resource 106, if the iden
tification number associated with the request falls within the
fixed-range of identification numbers indicated by sliding
window 218, assuming there are no other resource or request
conflicts.
On the other hand, transaction authorization unit 208

issues a retry notification to one of the requesters 104 (e.g.,
will instruct the requester to retry the request at a later time),
if the identification number assigned to a particular request
is not within the fixed-range of identification numbers
indicated by the sliding-window 218. The transaction autho
rization unit 208 can also instruct the particular requester to
retry the request if there is a conflict associated with ser
vicing the request, even if the identification number is within
the sliding-window 218. When issuing a retry notification,
transaction authorization unit 208 will typically send a retry
notification message that includes the identification number
assigned to the request. That way, the both the requester 104
and controller 108 can keep track of the particular request
for purposes of adhering to the controller's requirements.
Thus, transaction authorization unit 208 is responsible for
authorizing whether a request (whether new or retried) is
processed by common resource 108.

Referring to FIG. 2B, when sliding-window 218 is imple
mented to encompass one or more batches, transaction
authorization unit 208 compares the identification number
assigned to a request to a batch of identification numbers
currently being serviced by common resource 106. Trans
action authorization unit 208 will authorize a request to be
serviced by the common resource 106 (FIG. 1), if the
identification number assigned to the request is associated
with batch number currently being authorized for service by
transaction authorization unit 208. For example, Suppose
Batch 1 is currently being serviced and a request with an
assigned identification number of (10) from Batch 1 is
received. Assuming there are no other conflicts, transaction
authorization unit 208 will authorize the request to be
serviced by the common resource 106. However, if the
request has an assigned identification number of (10), but is
from batch 50, transaction authorization unit 208 will issue
a retry notification to the particular requester, which issued
the request if sliding-window does not encompass batch 50.

With reference to FIGS. 2A and 2B, any requests with
associated identification numbers that have been serviced
can be reassigned to incoming requests, once the sliding
window advances past the particular identification number.
Ideally, there will always be enough identification numbers
available to be assigned to incoming requests. This can be
accomplished by limiting the number of pending requests at
any one time or by sending an automatic retry request
(without and ID) if no identification numbers are available

US 7,325,082 B1
7

to be assigned. It is noted, however, that sending an auto
matic retry request does not necessarily guarantee fairness.

Although controller 108 has been described as including
identification generator 202, request assignment unit 204.
sliding-window 218, and transaction authorization unit 208, 5
it is appreciated that each of these elements are generally
illustrated from a logical point of view, and can be realized
in any form of hardware, firmware, Software, and any
combination thereof.

FIG. 3 is a block diagram of the controller showing how 10
select elements from FIGS. 2A and 2B can be implemented
according to another exemplary implementation. For
instance, in one embodiment, identification generator 202
and request assignment unit 204 include a current batch
counter 302, a comparator 304 a current batch ID counter 15
306, and Some type of selection circuitry, Such as a multi
plexer (MUX) 310. Sliding-window 218 includes one or
more batch counters 312, compare logic 314, an oldest batch
detector pointer 315, and one or more batch ID counters 316.
Transaction authorization unit 208 includes a bath ID in- 20
range detector 318 as well as a conflict controller 320. As
appreciated by those skilled in the art, each of these devices
can be implemented through the use of programmable logic,
hardware, circuitry, firmware, software or any combination
thereof. Those skilled in the art should also appreciate that 25
there are numerous ways to implement any one of these
elements and that FIG. 3 is illustrated for discussion pur
poses and is not meant to limit the scope of the claims.

In operation, controller 108 receives a stream of requests
from requesters 104 via line 322. Each request travels to 30
MUX 310 and controls whether an identification number is
assigned to the request, or if the request is a retry request. If
the request is a retry request it will already have an identi
fication number assigned to it and can immediately pass
through MUX 310 to transaction authorization unit 208 to 35
determine whether the identification number is within a
sliding-window as indicated by sliding-window 218.

If the request is a new, MUX 310 will select a new
identification number generated by current batch counter
302 and current batch ID counter 306. Current batch counter 40
302 generates a batch identification number. A batch size
register 308, which in one embodiment is programmable,
indicates the size of a current batch. Current batch ID
counter 306 generates an identification number for the
current batch indicated by batch counter 302. Compare logic 45
304 compares batch size register 308 to batch counter 302 to
determine when to advance current batch ID counter 306
and reset batch counter 302.
Once a request (whether new or retried) passes through

MUX 310, batch ID in-range detector 318, checks whether 50
the identification number associated with the request falls
within a sliding-window (such as a fixed-range of identifi
cation numbers that may include one or more batches)
indicated by the one or more batch ID counters 316. If batch
ID in-range detector 318 determines that the identification 55
number is not within the sliding-window, batch ID in-range
detector 318 notifies conflict controller 320. In response to
the notification, conflict controller 320 issues a retry
response to the requester that issued the request.

If batch ID in-range detector 318 determines that the 60
identification number is within the sliding-window, batch ID
in range-detector 318 notifies conflict controller 320 indi
cating that the request is authorized for servicing. In
response to the notification, conflict controller 320 will
authorize the request by sending a service authorization 65
signal (or the particular request) to common resource 106.
Even though batch ID in-range detector 318 indicates that a

8
particular request is authorized for servicing, conflict con
troller 320 may still issue a retry response to requesters, if
there is a resource or request conflict associated with the
request from another portion of multiprocessor system 102.

Finally, the one or more batch counters 312 enable oldest
batch detector pointer 315 to determine an oldest pending
batch. Each time a request is authorized the corresponding
batch counter is incremented and is compared to the batch
size. If the batch counter reaches the batch size and the batch
is the oldest batch (indicated by the oldest batch detector
pointer 315), then the sliding window pointers are incre
mented. It is also possible for the one or more batch counters
312 enable oldest batch detector pointer 315 to track
whether a batch has been leapfrogged to become an oldest
pending batch currently being serviced by sliding-window
218. It is noted that any non-counting devices described
above with reference to FIG. 3, such as batch ID in-range
detector 318 and oldest batch detector pointer 315, can be
implemented using rudimentary control logic circuitry. In
most instances, these devices are composed of one or more
comparators. As for conflict controller 320, again this device
uses rudimentary control logic, which can include control
logic and minimal state circuitry.

In alternative embodiment, a majority of the counters
(allocation—not de-allocation counters) described with ref
erence to FIG. 3 can be replaced with a single counter, where
the most significant bits generated by the counter (or most
significant portion of the counter) is used as the batch
indicator and the rest of the bits generated by the counter
identify the identification number within the batch.

Thus, implementing a controller 108 that uses a sliding
window as described herein is simple and inexpensive,
requiring minimal counters, control logic, and minimal
buffering. Such a controller can easily be adapted to function
on a broad range of multiprocessor Systems without having
to redesign custom protocols and controllers on a system
by-system basis.
Requesters

FIG. 4 shows select elements of a requester 104 according
to one exemplary implementation. Typically, each requester
includes a core processor (not shown) that generates new
requests. Before each new request is transmitted to common
resource 106 (FIG. 1), the new request is written into a
request transaction tracker 402. Request transaction tracker
402 is a register that stores all pending requests until they are
eventually serviced by common resource 106 at which time
information associated with the request in request tracker
402 can be over-written.
A new request exits requester 104 via path 412 of MUX

404. If the request is retried, a retry response is returned to
requester 104 via path 418. The retry response includes the
identification number assigned to the request. The identifi
cation number is written into a register 414.
The retry response also serves as a read index to request

transaction tracker 402, which causes request transaction
tracker 402 to read out the request stored in request trans
action tracker 402 associated with the retry response. After
the request is read from request transaction tracker 402, the
identification associated with the request in register 414 is
inserted into the request. Then at Some time thereafter, a
retried request is sent via path 410 through MUX 404 to
common resource 104.

Methods of Operation
FIG. 5 illustrates a method 500 for guaranteeing fairness

of transactions between multiple requesters in a multipro
cessor system. Method 500 includes blocks 502-514. The

US 7,325,082 B1

order in which the method is described is not intended to be
construed as a limitation, and any number of the described
method blocks can be combined in any order to implement
the method.

In block 502, a request is received from a particular
requester. For example, controller 108 (FIGS. 1 and 2)
receives a request from a requester 104 (FIGS. 1, 2 and 3).

In decisional block 504, a decision is made whether the
request is new or retried. If according to the Yes branch of
decisional block 504 the request is new, method 500 pro
ceeds to block 506. If according to the No branch of
decisional block 504 the request is retried then the request
already has an identification number assigned to it indicating
that the request was previously received, and method 500
then proceeds to block 508.

In block 506, if the request was new, an identification
number is assigned to the request. For example, request
assignment unit 204 (FIG. 2) assigns an identification num
ber generated by identification generator 202 (FIG. 2).

In a decisional block 508, a determination is made
whether the identification number is within a sliding-win
dow. For example, the identification number is compared to
sliding-window 218 (FIG. 2) to determine if the identifica
tion number is within the range of sliding-window 218 (FIG.
2). If according to the Yes branch of decisional block 508,
the number is within the sliding-window, method 500 pro
ceeds to block 512. If according to the No branch of
decisional block 508, the number is not within the sliding
window, method 500 proceeds to block 510.

In block 510, the request is not authorized for servicing
and a retry notification is issued to the requester that sent the
request, if the identification number associated with this
request is not within the sliding-window. For example,
transaction authorization unit 208 will instruct the requester
that issued the request to resend that request at a later time.

In block 512, the request is authorized for servicing, if the
identification number associated with this request is within
the sliding-window. For example, transaction authorization
unit 208 enables the request to be serviced (assuming no
other conflicts) if the request has an identification number
that falls within sliding-window 218.

In block 514, the sliding-window is advanced once a
request, with an oldest pending assigned identification num
ber within in the sliding-window, is enabled for service. For
example, sliding-window 218 advances one or more iden
tification numbers at a time, once an oldest pending request
is serviced by common resource 106 (FIG. 1). This includes
enabling an oldest-pending request in an oldest pending
batch as described above with reference to FIG. 2.

Although the invention has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention.

What is claimed is:
1. A system for guaranteeing fairness of transactions

between multiple requestors, comprising:
an identification generator configured to generate a con

tinuous ring of batch numbers in a sequential order
from a lowest batch number to a highest-batch number,
wherein the highest batch number and the lowest batch
number of the batch numbers are contiguous;

a request assignment unit configured to assign identifica
tion numbers to requests made by the requesters;

5

10

15

25

30

35

40

45

50

55

60

65

10
a sliding-window comprising a fixed-range of the identi

fication numbers configured to advance through the
continuous ring of identification numbers in sequential
order one or more identification numbers at a time, after
at least one of an oldest pending request, having an
identification number within the fixed-range of identi
fication numbers, is serviced; and

a transaction authorization unit, configured to authorize a
particular request be serviced if the identification num
ber associated with the particular request is within the
fixed-range of identification numbers indicated by the
sliding-window;

wherein the fixed-range of batch number indicated by the
sliding-window equals one or more batches each com
prising a predetermined plurality of identification num
bers.

2. The system as recited in claim 1, wherein the transac
tion authorization unit is further configured to issue a retry
notification to one of the requesters, if a particular identifi
cation number assigned to a particular request is not within
the fixed-range of identification numbers indicated by the
sliding-window.

3. The system as recited in claim 1, wherein the identi
fication generator comprises one or more counters.

4. The system as recited in claim 1, wherein the sliding
window comprises one or more counters.

5. A method for guaranteeing transactional fairness
among multiple requesters, comprising:

receiving a request from a particular requester;
assigning a batch number and an identification number to

the request if the request is new, wherein if the request
is retried the request already comprises an assigned
batch number and an assigned identification number
indicating that the request was previously received
before;

determining whether the identification number is within a
sliding-window;

enabling the request to be serviced, if the identification
number is within the sliding-window for servicing the
request and there are no conflicts associated with
servicing the request; and

advancing the sliding-window after an oldest pending
request with a assigned identification number in the
sliding-window is enabled for service

wherein
a continuous ring of batch numbers in a sequential order

from a lowest-batch number to a highest-batch number,
wherein the highest-batch number and the lowest batch
number of the batch numbers are contiguous; and

the fixed-range of batch number indicated by the sliding
window equals one or more batches each comprising a
predetermined plurality of identification numbers.

6. The method as recited in claim 5, further comprising
instructing the particular requester to retry the request at a
later time if the identification number associated with the
request is not within the sliding-window.

7. The method as recited in claim 5, further comprising
instructing the particular requester to retry the request, if
there is a conflict associated with servicing the request.

8. The method as recited in claim 5, wherein the sliding
window comprises a fixed-number of identification num
bers.

9. The method as recited in claim 5, wherein the sliding
window comprises one or more batches each comprising a
fixed-number of identification numbers.

10. The method as recited in claim 5, further comprising
instructing the particular requester to retry the request at a

US 7,325,082 B1
11

later time if the identification number associated with the
request is not within the sliding-window, wherein instructing
the particular requester to retry the request comprises issuing
a retry notification message to the particular requester, the
retry notification message comprising the identification
number assigned to the request.

11. The method as recited in claim 5, wherein the method
is performed by a control system associated with a cache
coherent system.

12. The method as recited in claim 5, wherein the method
is performed by a control system associated with an input/
output device.

13. The method as recited in claim 5, wherein each
requester is an agent in a multiple agent system.

14. The method as recited in claim 5, wherein each
requester is a processor in a multiple processor System.

15. The method as recited in claim 5, wherein each
request is a request to perform a particular transaction.

16. The method as recited in claim 5, wherein determining
whether the identification number is within a sliding-win
dow for servicing the request comprises comparing the
identification number to a range of identification numbers
associated with the sliding-window to determine whether the
identification number associated with the request is between
the range of identification numbers associated with the
sliding-window.

17. In a cache-coherent multiprocessor system, a coher
ency controller for preventing live locks by guaranteeing
fairness of transactions between multiple requestors, the
coherency controller comprising:

an identification generator configured to generate a con
tinuous ring of batch numbers in a sequential order
from a lowest batch number to a highest-batch number,
wherein the highest batch number and the lowest batch
number of the batch numbers are contiguous;

a request assignment unit configured to assign identifica
tion numbers to requests made by the requesters;

a sliding-window comprising a fixed-range of the identi
fication numbers configured to advance through the
continuous ring of identification numbers in sequential
order one or more identification numbers at a time, after
at least one of an oldest pending request, having an
identification number within the fixed-range of identi
fication numbers, is serviced; and

a transaction authorization unit, configured to authorize a
particular request be serviced if the identification num
ber associated with the particular request is within the
fixed-range of identification numbers indicated by the
sliding-window;

wherein the fixed-range of batch number indicated by the
sliding-window equals one or more batches each com
prising a predetermined plurality of identification num
bers.

10

15

25

30

35

40

45

50

12
18. In a multiprocessor system, a system for preventing

live locks by guaranteeing fairness of transactions, the
system comprising:

requesting agents configured to send requests to a
responding agent, each request agent identifies whether
the request is a new request or a retried request,
wherein if the request is retried the request already
comprises an assigned identification number indicating
that the request was previously made by the requesting
agent,

a responding agent, configured to:
(i) receive a request from a particular requester and assign

an a batch number and an identification number to the
request if the request is new, wherein if the request is
retried the request already comprises an assigned batch
number and an assigned identification number indicat
ing that the request was previously received before,

(ii) determine whether the identification number is within
a sliding-window of identification numbers currently
being serviced;

(iii) enable the request to be serviced, if the identification
number is within the sliding-window of identification
numbers and there are no conflicts associated with
servicing the request; and

(iv) advance the sliding-window only after an oldest
pending request with an assigned identification number
within the sliding-window is enabled for service

wherein
a continuous ring of batch numbers in a sequential order

from a lowest-batch number to a highest-batch number,
wherein the highest-batch number and the lowest batch
number of the batch numbers are contiguous; and

the fixed-range of batch number indicated by the sliding
window equals one or more batches each comprising a
predetermined plurality of identification numbers.

19. The system as recited in claim 18, wherein the
responding agent is further configured to notify the particu
lar requester to retry the request at a later time if the
identification number associated with the request is not
within the sliding-window.

20. The system as recited in claim 18, wherein the
sliding-window comprises a fixed number of identification
numbers.

21. The system as recited in claim 18, wherein the
sliding-window comprises one or more batches each com
prising a fixed-number of identification numbers.

22. The system as recited in claim 18, wherein the
responding agent comprises a counter configured to generate
an of identification number for assignment to a new request
each time a new request is received.

