
(12) United States Patent
Peacock et al.

(54) SYSTEM AND METHOD FOR PROVIDING AN
INLINE DATA CONVERSION FOR
MULTIPLEXED DATA STREAMS

(75) Inventors: Richard B. Peacock, West Chester, PA
(US); William L. Weber, III, Eagleville,
PA (US)

(73) Assignee: Unisys Corporation, Blue Bell, PA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 1016 days.

(21) Appl. No.: 11/648,017

(22) Filed: Dec. 29, 2006

(51) Int. Cl.
G06F 13/12 (2006.01)
G06F 13/00 (2006.01)

(52) U.S. Cl. 710/65; 710/29; 710/33;
712/200

(58) Field of Classification Search 710/29-33,
710/65-71; 712/200,208; 717/136

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,287,534 A * 211994 Reutheretal. 714/819

504~

Stream
Decode
Module

Address
--'1""10 Generation

Module

604

605

111111 111
US007870316Bl

(10) Patent No.: US 7,870,316 Bl
Jan. 11,2011 (45) Date of Patent:

5,574,923 A * 1111996 Heeb et al. 712/38

5,630,084 A * 5/1997 Ikumi 7121200

5,828,884 A * 10/1998 Lee et al. 717/141

5,867,690 A * 2/1999 Lee et al. 710/65

7,587,535 B2 * 912009 Sawai 710/62

2004/0059848 Al * 3/2004 Chang et al. 710/65

2004/0221274 Al * 1112004 Bross et al. 717/136

* cited by examiner

Primary Examiner-Christopher B Shin
(74) Attorney, Agent, or Firm-Richard J. Gregson; Robert P.
Marley

(57) ABSTRACT

A computing system having an apparatus for providing an
inline data conversion processor. The inline data conversion
processor includes a host processor interface, a network inter­
face, a peripheral interface, and a packer stream address for
defining a data transfonnation applied to a block of data as it
passes between the host processor interface and the periph­
eral and network interfaces.

502

Network Interface
Module

31 Claims, 7 Drawing Sheets

104

503
611

612

613
610

pata Transform Module

Packer Stream Address
Stream Transformation Defintion

501

601

u.s. Patent

o
o ...

------~-----
C')
o ...

Jan. 11,2011 Sheet 1 of7 US 7,870,316 Bl

....
C')

I

o
N

I ~
I

o
Z I ~

L--y---'

I
,..-------'----,

o ...

N C') ... -IU
E ..
0 u..

~ ~
0
~

-m
Q

'" o ...

-------~---------

0

a..
Q

C')

~

~----------------~

'III"'"" .
(!) -LL

.:::::::
Memory

201 II
Operating System

Distributed Firewall
Module

Applications

232b
202 I I

User Programs

BIOS

215

233b 233a

FIG. 2

203

211

212

213

214

204

~
7Jl
•
~
~
~
~ = ~

~
~

?
~

N
o

rFJ

=­('D
('D
N
o
-....l

d
rJl
-....l
00
-....l = W
"""'" 0'1

= """'"

u.s. Patent

..­..-
C")

\
It)

"It

('t)

N

""'"

0

CD

- - - --

""'"

Jan. 11,2011

oe.l

N
o
C")

Sheet 3 of7 US 7,870,316 Bl

\
It) 0

"It
""'"

('t)
N

N ('t)

•
(!)

""'" "It -LL
0 It)

CD

""'"

~
7Jl
•
~
~
~
~ = ~

~
~

?
I ,

/ '
/ '- ~
I' 0
I'
/"

I '
I '

I '
I '

401 ~ I I rFJ 421' '0 422

o 1 ~ k: .1: 7 403 [
,/ \ Ij;o.

o

b ~:l t= I 402 431 ~ '--- 432 ::;

411 412

FIG. 4

d
rJl
-....l
00
-....l = W
"""'" 0'1

= """'"

u.s. Patent JanO 11,2011 Sheet 5 of7 US 7,870,316 Bl

..,
co
It)

\
!f»
Gl U

.c~

.e.GI .. -Glr::
0.-

GI
N U

~ co GI
r:::: ~ It)

U 0 .!
~ 0ii)

.5 It) .! ... CI)
~ .5 ~ ~ "5 <ltl III •

.00: III

(!) .. =0"00 GI
0 r:::: 0 g
! -U:iE -GI CO

.t LL z -- III
CO 0
0 :I:

504~

Packer Stream Ad
Stream Transformation

~

~

ress
efintion

Stream
Decode
Module

Address
Generation

Module

/' 502

I
Network Interface

Module

~604

V- 605

l- I
i I Remote Selection

1 Module

I
I Byte Swap
I Module

T
I Non-Data Byte
Transform Module

Data I[BD§f2[m Mo!;lYI!!

1 l Host Processor Interface
Module

~501

FIG. 6

602

~603

611 ~ Peripheral l /
Interface Module I

503

612

613
V- 61O

601

~
7Jl
•
~
~
~
~ = ~

~
~

?
:-'
N
0

rFJ

=-('D
('D
0\
0
-....l

d
rJl
-....l
00
-....l = W
"""'" 0'1

= """'"

...- -
Start - -

Receiving a packer stream
address associated with a data

transfer operation

Decoding a first portion of the
PSA to determine a

transformation definition

Generating an outgoing data
address associated with data

words of an outgoing data
stream

Receiving an incoming data
stream from a data source

719

~721

~
7Jl
•
~
~
~
~ = ~

~
~

=
~

N
0

rFJ

=­('D
('D
-....l
o
-....l

d
rJl
-....l
00
-....l = W
"""'" 0'1

= """'"

US 7,870,316 Bl
1

SYSTEM AND METHOD FOR PROVIDING AN
INLINE DATA CONVERSION FOR
MULTIPLEXED DATA STREAMS

FIELD OF THE INVENTION

2
apparatus to a communications network within the comput­
ing system, a peripheral interface for connecting the appara­
tus to a peripheral device within the computing system, a
stream decode module for decoding a first portion of the PSA
to generate a transformation definition, an address generation
module for decoding a second portion of the PSA to generate
an outgoing data address associated with each data word of
the outgoing data stream, and a data transform module for
generating the outgoing data stream using the transformation

The present invention relates generally to techniques for
providing network communications between processing
devices, and, in particular, to techniques for providing inline
data conversion for multiplexed data streams. 10 definition.

BACKGROUND OF THE INVENTION
In another embodiment, the present invention is a method

for providing an inline data conversion processing upon a
incoming data stream as part of a data transfer operation. The
method receives a packer stream address (PSA) associated Computing systems are routinely connected to communi­

cations networks to facilitate remote access to data, process­
ing resources, and application programs. This communica­
tions are facilitated by the use of standard commnnications
transport protocols such as TCP/IP, UDP, and similar coop­
erative data transfer protocols. Computing systems also are
routinely connected to peripheral devices such as mass stor­
age devices that maintain data generated and used by appli­
cations. Peripheral devices may maintain this data within data
structures that may differ from the various formats and data
structures used by applications as well as formats and data
structures used in network communications.

15 with a transformation performed upon the incoming data
stream, decodes a first portion of the PSA to determine a
transformation definition of the transformation performed
upon the incoming data stream, generates a outgoing data
address associated with each data word of an outgoing data

20 stream from a second portion of the PSA, receives the incom­
ing data stream from a data source, generates the outgoing
data stream by applying the transformation definition to the
incoming data stream, and transmits the outgoing data stream
to a data destination.

25
In yet another embodiment, the present invention is a

machine-readable medium having encoded thereon program
code, that when the program code is executed by a host
computing system, the host computing system implements a

These formats and data structures used in the various com­
ponents in a computing system may also change over time as
the technology of various components evolves. For example,
disk drives and similar storage devices store data using
blocks, tracks, and sectors that relate to the physical media
used for storage. These structures may vary as the size of the
rotating platter, the density of the tracks, and transfer data rate
change. Additionally, these same factors may combine with
data buffer sizes within the peripheral devices and the system
data transfer rate from peripheral devices to system memory
to affect the data structures and formats used within a system.

30 method for providing an inline data conversion processor.
The method receives a packer stream address (PSA) associ­
ated with a transformation performed upon the incoming data
stream, decodes a first portion of the PSA to determine a
transformation definition of the transformation performed

35 upon the incoming data stream, generates a outgoing data
address associated with each data word of an outgoing data
stream from a second portion of the PSA, receives the incom­
ing data stream from a data source, generates the outgoing
data stream by applying the transformation definition to the

Many applications may require support for user over an
extended period of time during which the above components
evolve requiring changes to the data formats and data struc­
tures using within a computing system. These changes typi­
cally require the applications to be re-written over time to
accommodate these changes. In addition, the applications
may need to support multiple formats and data structures that
depend solely upon which peripheral devices, such as mass
storage, devices are present on a given computing system at a 45

particular point in time. All of these possible combinations
create a need for manners to reformat data within a computing
system in an efficient manner. This need may also include
devices and processes that offload the reformatting operations
from a system processor while not degrading data transfer 50

rates between devices in the computing system. The present
invention attempts to address many of these deficiencies
within the prior art as noted above.

40 incoming data stream, and transmits the outgoing data stream
to a data destination.

SUMMARY OF THE INVENTION 55

BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, features, and advantages of the present
invention will become more fully apparent from the following
detailed description, the appended claims, and the accompa­
nying drawings in which like reference numerals identifY
similar or identical elements.

FIG. 1 illustrates an example multi-device based comput­
ing system according to an embodiment of the present inven­
tion;

FIG. 2 illustrates a general purpose computing system for
implementing various embodiments of the present invention;

FIG. 3 illustrates example embodiments of data formats
used within a computing system according to one embodi­
ment of the present invention; Problems in the prior art are addressed in accordance with

the principles of the present invention by providing inline data
conversion for multiplexed data streams. FIG. 4 illustrates example embodiments of data storage

60 structures used within a computing system according to one
embodiment of the present invention;

In one embodiment, the present invention is a computing
system having an apparatus for providing an inline data con­
version processor. The inline data conversion processor
receives an incoming data stream and a packer stream address
(PSA) and generates an outgoing data stream. The inline data
conversion processor includes a host processor interface for 65

connecting the apparatus to a host processing nnit within the
computing system, a network interface for connecting the

FIG. 5 illustrates an example embodiment of an inline data
conversion module used within a computing system accord­
ing to an embodiment of the present invention; and

FIG. 6 illustrates a detailed example embodiment of the
inline data conversion module of FIG. 5 according to an
embodiment of the present invention.

US 7,870,316 Bl
3

FIG. 7 illustrates an example embodiment of a flowchart
for a sequence of operations performed to implement an
embodiment of the present invention.

DETAILED DESCRIPTION

4
each word of data as it passes though the inline data conver­
sion module 104 at the full data transfer rate. The module 104
may reformat the data from a plurality of different peripheral
data format I 132i to the processing module's format 0 131
when the data is moved into system memory. The module 104
reforms data results from processing within processing mod­
ule 100 to the peripheral data format i132i when data is moved
from the processing module 100 for storage and later use.
Module 104 may provide any number of reformatting opera-

10 tions needed to support attached peripheral devices and net­
work protocols.

FIG. 1 illustrates an example multi-device based comput­
ing system according to an embodiment of the present inven­
tion. The computing system consists of a processing module
100, a peripheral storage module 106, inline data conversion
module 104, and a network interface connection (NIC) mod­
ule 105 that connects the computing system to a communi­
cations network 120. The processing module 100, the periph­
eral storage module 106, and a network interface connection
(NIC) module 105 are connected to the inline data conversion 15

module 104 using processor bus 103, peripheral bus 107, and
network bus 108, respectively.

Processing module 100 consists of at least one processor
101 and system memory 102. Processor 101 executes instruc­
tions to implement applications that process data within the 20

system memory 102. The results of this processing is typi­
cally stored within system memory 102 for later transfer to
the peripheral module 106 or NIC 105 for storage ancl/oruse
in other computing systems. Processing module 100 may
possess multiple processors 101 that operate independently 25

or together to process data stored within system memory 102.
Peripheral storage module 106 consists of one or more

Input-Output Processor (lOP) modules 110 that support con­
nections to peripheral devices such as hard drives 111, remov­
able storage devices 112, and CD/DVD/CD-R drives 113. 30

lOP module 110 send and receive data from the storage
devices 111-113 that is transferred through the inline data
conversion module 104 to system memory 102. lOP module
110 provides any interface processing and data/control sig­
nals necessary to communicate with the variety of supported 35

peripheral devices. While the embodiment of FIG. 1 illus­
trates the support for mass storage devices 111-113 as the
peripheral devices, one of ordinary skill in the art will recog­
nize that any peripheral device supported by a corresponding
lOP module 11 0, such as scanners, imaging devices and other 40

input/output devices, may be included within a computing
system without departing from the spirit and scope of the
present invention as recited within the attached claims.

Network interface connection (NIC) module 105 sends and
receives data from remote computing systems attached to 45

communications network 120 that is transferred through the
inline data conversion module 104 to and from system
memory 102. NIC module 105 provides any interface pro­
cessing and data/control signals necessary to communicate
with network 120 using a variety of supported communica- 50

tion protocols such as TCP, UDP and similar IP-based com­
munications. NIC 105 may also provide any connection
establishment, maintenance, and termination processing
needed to support network 120 as well as message routing,
error detection and recovery, and related connection overhead 55

operations.
Inline data conversion module 104 acts as bridge between

the devices attached to the peripheral bus 107 and network
bus 108 with the processing module 100 attached to the
processor bus 103. Data being transferred from a peripheral 60

device 111-113 to memory 102 passes through the inline data
conversion module 104 at the full bus transfer rate without
storage or buffering within the module 104. As the data passes
though the device 104, the data may also be transformed to
alter its format from a particular data work format I 132i to a 65

data format 0 131 used within the processing module 100.
This data transformation and reformatting is performed upon

FIG. 2 illustrates a general purpose computing system for
implementing various embodiments of the present invention.
Those of ordinary skill in the art will appreciate that the
computing system 200 may include many more components
than those shown in FIG. 2. However, the components shown
are sufficient to disclose an illustrative embodiment for prac­
ticing the present invention. As shown in FIG. 2, computing
system 200 is connected to WAN/LAN 120 (not shown), or
other communications network, via network interface unit
221. Those of ordinary skill in the art will appreciate that
network interface unit 221 includes the necessary circuitry for
connecting computing system 101 to WAN/LAN 120, and is
constructed for use with various communication protocols
including the TCP/IP protocol. Typically, network interface
unit 221 is a card contained within computing system 101.

The computing system 200 also includes processing unit
201, video display adapter 222, and a mass memory, all
connected via bus 202. The mass memory generally includes
RAM 203, ROM 204, and one or more permanent mass
storage devices, such as hard disk drive 232a, a tape drive,
CD-RO MlDVD-RO M drive, and! or a floppy disk drive 232b.
The mass memory stores operating system 211 for control­
ling the operation of the programmable computing system
101. It will be appreciated that this component may comprise
a general purpose server operating system as is known to
those of ordinary skill in the art, such as UNIX, MAC as
XTM, LINUXTM, or Microsoft WINDOWS XpTM. Basic
input/output system ("BIOS") 215 is also provided for con­
trolling the low-level operation of computing system 101.

The mass memory as described above illustrates another
type of computer-readable media, namely computer storage
media. Computer storage media may include volatile and
nonvolatile, removable and non-removable media imple­
mented in any method or technology for storage of informa­
tion, such as computer readable instructions, data structures,
program modules or other data. Examples of computer stor­
age media include RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computing
device.

The mass memory also stores program code and data for
providing a host computing system. More specifically, the
mass memory stores applications including host application
program 213, user programs 214, and distributed firewall
module 212.

The computing system 200 also comprises input/output
interface 224 for communicating with external devices, such
as a mouse 233a, keyboard 233b, scanner, or other input
devices not shown in FIG. 2. Likewise, computing system
101 may further comprise additional mass storage facilities
such as CD-ROMlDVD-ROM drive and hard disk drive 232a.
Hard disk drive 232a is utilized by computing system 101 to

US 7,870,316 Bl
5

store, among other things, application programs, databases,
and program data used by various application programs.

The embodiments of the invention described herein are
implemented as logical operations in a general purpose com­
puting system. The logical operations are implemented (1) as 5

a sequence of computer implemented steps or program mod­
ules running on a computer system and (2) as interconnected
logic or hardware modules running within the computing
system. This implementation is a matter of choice dependent

6
Processors manufactured by MOTOROLATM CORPORA­

TION, such as the 68000 family of processors, use "Big
Endian" byte order.

Inline data conversion module 104 may be used to refonn
data words being transferred from a peripheral device 111 to
system memory 102 from a Big Endian byte order format to
a little Endian byte order fonnat automatically. Inline data
conversion module 104 may also add and/or delete tag byes
312 when the data is converted to and from the first data word

on the perfonnance requirements of the computing system 10 format30ltotheseconddatawordfonnat302andtothethird
implementing the invention. Accordingly, the logical opera­
tions making up the embodiments of the invention described
herein are referred to as operations, steps, or modules. It will
be recognized by one of ordinary skill in the art that these
operations, steps, and modules may be implemented in soft- 15

ware, in finnware, in special purpose digital logic, and any
combination thereof without deviating from the spirit and
scope of the present invention as recited within the claims
attached hereto. This software, firmware, or similar sequence
of computer instructions may be encoded and stored upon 20

computer readable storage medium and may also be encoded
within a carrier-wave signal for transmission between com­
puting devices.

data word fonnat 303.

One skilled in the art will recognize that any number of
other byte order arrangements may be used in place of either
the Big Endian and the Little Endian byte orders used to
describe a particular embodiment without departing from the
spirit and scope of the present invention as recited within the
attached claims.

FIG. 4 illustrates example embodiments of data storage
structures used within a computing system according to one
embodiment of the present invention. Data stored on a disk
111 is typically stored in blocks of data that are stored in
tracks and sectors on the physical disk. Different block sizes
are used within various computing systems. These block sizes
have also changed over time as the nnderlying physical disks
111 have evolved. When such changes have occurred over
time, applications may expect to use a disk block size of a first
size and the disk itself operating most efficiently at a second
disk block size. Mapping the first block size onto the second
block size, data fonnatting issued may need addressing by the
inline data conversion module 104.

For example, applications may have been written expect­
ing to access and store data using 180 byte blocks of data
when the disk stores data in 512 or 1024 byte blocks. The use

FIG. 3 illustrates example embodiments of data formats
used within a computing system according to one embodi - 25

ment of the present invention. A first data word format 301
illustrates a 48-bit data word 311 contained within an 8-byte
word. Two bytes of tag data 312 are appended to the data word
311 to identify the type of data stored within the word 301. A
second data word 302 contains a 48-bit data word stored 30

within a six-byte word. In the second data word 302, all data
bits are maintained and used as data only. A third data word
303 contains a 64-bit data word stored within an eight-byte
word. In the third data word 303, all data bits are also main­

35 of 180 byte blocks was useful when data works consisted
solely of 6-byte 48-bit words (i.e. 30 6-byte words are stored
within 180 byte blocks). Recently, 8-byte 64-bit words are
becoming more common. An even number of 8-byte words
fix most efficiently within blocks of 512 or 1024 (i.e. blocks

tained and used as data bits.
In addition to the different sizes for the data word portions

of these three words 301-303 and in addition to the optional
use of tag data within the first data word format 301, the order
of the various bytes within each of the three data words may
differ. In the first data word format 301 and the second data
word format 302, the bytes of data are arranged in a little
endian byte order. In contrast, the third data word fonnat 303
arranges the bytes of data in a big endian byte order.

40 having a power of 2 number of bytes). When 180 byte of data
that represent a block of data are stored within 512 byte
physical blocks of data on a disk 111, the address for a
particular byte of data is mapped from the 180-byte address
space to the 512-byte block address space.

"Little Endian" byte order refers to a low-order byte of the
number is stored in memory at the lowest address, and the 45

high-order byte at the highest address. (The little end comes

This mapping of data may be accomplished in many dif-
ferent marmers. In a first example mapping, which may be
identified as Virtual Sector Size 1 (VSSl), places each 180-
byte block contiguously adjacent to each other across a con­
tinuous set of 512-byte blocks. A set of 512-byte block 401

first.) For example, a 4 byte LongInt data structure:
Byte3 Byte2 By tel By teO will be arranged in memory as

follows:
Base Address+O ByteO
Base Address+ I Bytel
Base Address+2 Byte2
Base Address+3 Byte3

50 are mapped to store a set of 180-byte blocks 402. Individual
512-byte blocks within the set of blocks 401 are identified as
Block 0, Block 1 etc. Individual180-byte blocks within the
set of blocks 402 are identified as Block a, Block b etc. When

Processors manufactured by INTELTM CORPORATION, 55

such a mapping of three (3) 180 blocks of data, Blocks a-c, are
mapped onto two (2) 512-byte blocks, Blocks 0-1, Blocks a-b
fix completely within Block O. A first portion of Block c 411 such as the x86 and PENTUMTM processors, and the proces­

sors typically used in many personal computers use "Little
Endian" byte order.

"Big Endian" means that the high-order byte of the number
is stored in memory at the lowest address, and the low-order 60

byte at the highest address. (The big end comes first.) Our

is also stored to fill Block O. A second portion of Block c 412
that remains after the first portion of Block c is stored in Block
o is subsequently stored in the first portion of Block 1. Addi­
tional 180-byte blocks, Block d,e etc., are stored in the
remaining portions of Block 1. This process repeats itself as
all of the 180-byte blocks 402 are mapped onto corresponding
512-byte blocks 401. All of the available bytes of storage in
the set of 512-byte blocks 401 on disk 111 are used to store the

LongInt, would then be stored as:
Base Address+O Byte3
Base Address+ I Byte2
Base Address+2 Bytel
Base Address+3 ByteO

65 set of 180-byte blocks of data 402. Unfortnnately, addressing
a particular byte of data within a randomly selected 180-byte
block of data is not easily detennined in the 512-byte blocks

US 7,870,316 Bl
7

without knowing the exact number of blocks from the begin­
ning of the set of blocks on the disk 11 is known.

In a second example mapping, which may be identified as
Virtual Sector Size 2 (VSS2), places two (2) ISO-byte block
within each of the blocks of set of 512-byte blocks 401. In this
example, Blocks k-1 within the set of ISO-byte blocks 403 are
mapped into Block 5425 within the set of 512-byte blocks
401. Block k 321 and Block 1 422 require 360 bytes of data
which completely fit within the 512-bytes of Block 5425 with
a set of 152 bytes of data 423 that are unused for storage. The
less efficient use of available storage provides an easier map­
ping of bytes as all of the data within Block k 421 and Block

10

1 422 are located within Block 5425 on the disk 111. Within
this mapping, Blocks k 421 is considered an even block and
Block 1422 is considered an odd block as use ofS-byte words 15

require a first part of a particular data byte 431 to be stored
within block k 421 and a second part of the particular data
byte 432 to be stored within Block 1 422. This arrangement
occurs because 22.5 S-byte blocks fit within the ISO bytes of
Blocks k-1 421-422. 20

FIG. 5 illustrates an example embodiment of an inline data
conversion module used within a computing system accord­
ing to an embodiment of the present invention. Inline data
conversion module 104 possesses a network interface 502 for
connecting to network bus 108, a peripheral interface 503 for 25

connecting to peripheral bus 107, and host processor interface
501 for interfacing to processor bus 103. Data transfers
through inline data conversion module 104 use these inter­
faces as discussed above.

Inline data processor 104 also accepts a Packer Stream 30

Address 504 that identifies the data re-formatting and trans­
formation that is to be applied when data passes through the
module 104. The inline data conversion module 104 may also
be referred to as a "data packer" as blocks of data are packed
into data streams transferred within a computing system.

Inline data conversion module 104 performs transfers via
'Packing Streams". Each packing stream is defined by a con­
trol word called a PSW. Fields within a PSW specifY the
transfer and VSS form to be used. Additionally, a PSW can
define address translation to extend limited addressing capa­
bilities of lOP devices and check-summing for networking
per IETF RFC-793.

Stream Checksum
Internal Stream
Stream Base

Stream Status

Stream Control

63 :48 RFC-793 checksum
47 HT or Internal PCI -X stream

46:12 base address - allows alignmentto host
addresses that are 4096 byte aligned

11:10 bit 10 - Master Data Parity Error
bit 11 - Target Data Parity Error

9:8 bit 8 - disable master Data Parity propagation
and master assertion ofPERR#

35

40

45

50

8

-continued

input Transfer output Transfer PSC PSE

Discard Data Transfer Zeros 63
Transfer Tags Even Transfer Tags Even 2 0-44
reserved reserved 2 45-59
Transfer Tags Even Transfer Tags Even 2 60
reserved reserved 2 61-62
Untagged Transfer Untagged Transfer 2 63
Force Data Tags Strip Tags 0-60
reserved reserved 61-63
Force Program Tags reserved 0 0-60
reserved reserved 0 61-63

The Force commands set a 16 bit tag on each 6 byte word
written. Even if only a part of the 6 byte word is written, the
tag is set for the word. Forcing data tags sets a OxOOOO, and
forcing program tags sets Ox0003. Each resulting S byte word
is byte swapped.

Transfer Tags commands sets the tag from the data stream,
but applies a byte swap to each S byte word.

Transfer Zeros supplies a constant zero to all fetch
requests; Discard Data accepts write transactions, but does
not forward the transactions.

Edge values less than 60 define VSS2 packing; otherwise
it's non-VSS2.

Inline data conversion module Architecture allows for 223
streams, but the actual number is implementation dependent.

A Packer Stream Address, PSA, is the address in a Inline
data conversion module internal interface (HT and internal
PCI-X) transaction. It has two forms.

The VSS2 form is-

reserved 63:45
Stream Index 44:21 Xfer Control Word index
Xfer Block 20:9 host memory block
XferWord 8:3 block word offset
reserved 2:0 used in PCI-X

And the non-VSS2 form is-

reserved
Stream Index
Xfer Offset
reserved

63:45
44:21 Xfer Control Word index
20:3 byte offset (could be in terms of6 or 8)

2:0 used in PCI-X

Stream Index is used to locate the appropriate PSW for this
stream. The remainder of the PSA specifies the stream offset.

Stream Command
Stream Edge

bit 9 - disable target Data Parity and target
assertion ofPERR#

7:6 (PSC)
5:0 (PSE)

Stream Index 0 references a hardwired PSW that is used to
access the Inline data conversion module SRAM and control

55 registers. The PSC and PSE of this PSW specify and
Untagged transfer.

Inline data conversion module Commands & Edges are
what define re-formatting operation.

input Transfer output Transfer PSC PSE

Transfer Tags Odd Transfer Tags Odd 0-44
reserved reserved 45-59
Transfer Tags Odd Transfer Tags Odd 60
reserved reserved 61-62

For use on particular embodiment of the inline data con­
version module 104, bit 39 goes out on the HT bus when one

60 device is using the HT Device expansion space. In order to
make the most efficient use of address space of the BCM1250
the following is a requirement for the Inline data conversion
module 104 in this particular embodiment.

65

Use of Bit 39 is as follows:

If bit 39, of the PSA received by the HT, is set to 1, the
access is a Non-Stream Index O. The remaining bits
(3S:21) will identify the Stream Index.

US 7,870,316 Bl
9

If bit 39, of the PSA received by the HT, is set to 0, the
access is a Stream Index O. The remaining bits (38:21)
will be ignored in detennining the access type.

This gives the finnware the ability to use 32 bit addressing
when accessing PSWs and FPGA internal registers and
allows DMA transfers to use 64 bit addressing (actually 40bit
addressing on HT).

The Inline data conversion module 104 supports external
(Host) addresses from 0 to 263 _1. Only those defined by its 10

BAR are claimed, others are ignored.

FIG. 6 illustrates a detailed example embodiment of the
inline data conversion module of FIG. 5 according to an
embodiment of the present invention. Inline data conversion
module 104 may be implemented using a host processor 15

interface module 601 for providing data transfer signals and
data buffering with the host processor interface 501 to pro­
cessor bus 103. Inline data conversion module 104 may also
include a peripheral interface module 603 for providing data

20
transfer signals and data buffering with the peripheral inter-

10
Config Registers are as defined by the PCIIPCI-X specifi­

cations. DeviceID, VendorID, ClassCode, RevisionID, Sub­
systemID, and SubsystemVendorID are read-only from the
Host interface.

Host Config Space appears in the Inline data conversion
module Control registers, too. There it is accessible from the
HT interface. DeviceID, VendorID, ClassCode, RevisionID,
SubsystemID, and Subsystem VendorID are writeable from
the HT interface.

A Host Reset logic circuit is triggered through the
Extended Configuration space. Host directed lOP Reset is
defined as bit 5 of the Configuration Register Ox40. The host
can set this bit to initiate a reset on the board that this Inline
data conversion module 104 resides. The setting of this bit
will initiate a signal to the CPLD using pin/signal CPLD­
_INTF[I] of the interface signals. The bit will clear itself in a
few clock cycles.

On its external PCI-X interface the Inline data conversion
module 104 appears as a simple Master Mode DMA PCI-X
device with a single 64-bit BAR. Only Host Data Cycles
which fall within the BAR range are claimed by the Inline
data conversion module Host Target.

face 503 to processor bus 107. Inline data conversion module
104 may use a network interface module 602 for providing
data transfer signals and data buffering with the network
interface 502 to network bus 108.

Packer Stream Address 504 is passed through a stream
decode module 604 and an address generation module 605 to
select the data re-fonnatting and transformation that is to be
applied when data passes through the module 104 and gen­
erate the memory address used when data is passed onto one
of the busses 103,107-108 in the computing system. Data
transfonnation module 610 applies a data transformation to
the data words as they pass between the host processor inter­
face module 601 and either the peripheral interface module
603 and the network interface module 602. Data transfonn
module 610 comprises a remote selection module 611, a byte
swap module 612, and a non-data byte transfonn module 613

The Host Target is a 32 bit target and only supports 32 bit
25 transactions. It implements a 64 bit BAR at the first BAR

location and a BIOS Expansion BAR.
In FIB Mode (CPLD FIB Jumper is installed), BAR 0 is 16

MB in size and is remapped to OxlfXxxxxx. It functions as a
direct 32-bit pass-through to Hyper-Transport (HT). Only 32

30 bits at a time are passed to HT. No packing is ever perfonned.

Writes up to 32 bits are accepted and posted to HT. If the
host attempts to transfer more in a single 32 bit DWord, it is
disconnected.

On reads, 32 bits are always requested from HT and
35 returned to the host regardless of any byte enable settings.

In non-FIB mode, the BAR size is define by a BAR Mask
register, but only offsets in the range OxlcOOO thru Oxlffff are
passed through to the HT interface. These are remapped to
O-for example, Ox8001cOOO remaps to OxOOOlcOOO. This
range is used for an lOP Dump and other low-level protocols
which is not defined in the document.

Reads in other ranges return the value Oxffffffff except for
offsets Ox40 and Ox44. Ox40 and Ox44 return the contents of

45 an associated register. Once read, the register (Ox40 or Ox44)
is set to Oxffffffff.

to perfonn the transfonnations defined by the Packer Stream
Address. Remote selection module 611 selects between the
network interface 502 and the peripheral module 503 for use 40

in a particular data transfer. The remote selection module 611
multiplexes data between these interfaces depending upon
which data stream is processed. The byte swap module 612
transfonns the arrangement of data bytes within the data
work. Byte swap module 612, for example may be used to
transfonn a data word from a Big Endian byte order to a Little
Endian byte order. The non-data byte transfonn module 613
maybe used to add or delete tag bytes 312 to six (6)-byte data
words 301-302. Other transfonnation modules may also be
included within data transform module 610 as needed to 50

complete a desired re-formatting operation without deviating
from the spirit and scope of the present invention as recited
within the attached claims.

Non-FIB target writes outside the range OxlcOOO thru
Oxlffff are more complex. They have the claimed offset
appended and are then posted to the HT interface in a FIFO
fashion using either the Primary FIFO registers or the Priority
FIFO registers.

The Host Config Space of the Host Target is the low 256
bytes of the SRAM address space. Some portions may be 55

implemented as registers; the rest are actual SRAM locations.

BAR Offset
Dword

63:32
31:0

Address offset oftbe PCI/PCI-x write
DWord written

The initial values for the Config registers are as follows:

DeviceID
VendorID
SubsystemID
SubSystem Vendor ID
ClassCode
RevisionID

OxCOBO
Ox1018
OxCOBO
Ox1018
Ox020000 (Network, Etbernet Controller)
lowest 8 bits of FPGA binary version

Target writes to a 4096 modulus of Ox40 are posted using
the Primary FIFO. Writes to any other location are written

60 using the Priority FIFO. A full FIFO causes writes to be
retried.

When enabled, the Expansion ROM BAR allows host
BIOS access to the Flash memory on the target lOP. The size
of this BAR is limited to 1 MByte. It is remapped to

65 Oxl FOxxxxx similar to BAR 0 in FIB mode and functions as
a direct 32-bit pass-through to Hyper-Transport (HT) with no
packing.

US 7,870,316 Bl
11

Even thought the Host Target is only a 32 bit target, the
Host Master is a full 64 bit target. It attempts to perform
transactions in 64 bit mode and only reverts to 32 bit mode if
the Host slot is 32 bits.

The Host Master always does cache aligned Write Com­
bining and some Write Collapsing. For PCI-X this means that
it accumulates posted data attempting to build an aligned 128
byte block. For PCI it attempts to accumulate blocks of cache­
line size multiples and uses Memory Write Invalidates.

It is very likely that incoming Host Master transactions will 10

break on non-Quad-word boundaries. This will result in the
last Quad-word address of the prior transaction being the
same as the first Quad-word of a transaction that needs to
combined. In this case the byte lanes of the two Quad-words
are merged and a single Host Master transaction formed. 15

Due to tag insertion, it is also likely the tag byte lanes will
be valid in both Quad-words. This does not stop the merging.
Rather, tag lanes from either Quad-word may be selected for
the merge.

Writes that carmot be combined force a transaction to 20

deliver the preceding posted data. In no case is the order of
posted data changed. A timer also forces a transaction to be
delivered when no subsequent transaction triggers delivery
after 1 microsecond.

Reads that originate from the internal PCI-X bus and HT 25

DMAs pass along the block count to the Host PCI -X interface
unless it is too large to be internally buffered, in which case
the amount that can be buffered is requested. Actual HT reads
also pass along the amount requested, but are limited to 64
bytes by HT. (The BCM 1250 Z-Bus further limits reads to 32 30

bytes.)
When operating in PCI mode, the Host Master accepts as

much as the Host delivers in the transaction which will typi­
cally be 512 bytes.

Register
Name

Host Config
Status/Control

Host Read

Primary FIFO

Priority FIFO

HTDMAO,O

12
The address ofa non-Host Data Cycle transfer is not a true

address, but rather a Packer Stream Addresses, PSA,
described earlier.

The Stream Index field is first isolated and used to obtain
the appropriate PSW. The Stream Command and Stream
Edge define the how the data transferred will be processed by
the Inline data conversion module 104.

The output quad-word address for the data is calculated one
of five ways depending on the stream command. The quad
word address is not the byte address but an address that
represents 8 bytes.

In non-VSS2 Force/Strip tags mode-Quad-word
address~(Stream Base*512)+(Xfer Offset*8/6)

In VSS2 Force/Strip tags mode-Quad-word address~
(Stream Base*512)+Xfer Block*60+Xfer
Word*8/6+Stream Edge

In VSS2 Transfer Tags Even and Odd mode-Quad­
word address~(Stream Base*512)+Xfer
Block*45+Xfer Word+Stream Edge

In all other cases-Quad-word address~(Stream
Base*512)+Xfer Offset

The calculated quad-word address is used by a Inline data
conversion module Master for its fetch or store.

Inline data conversion module Control Registers and
SRAM are only accessible from HT and internal PCI-X inter­
faces. They are selected by the hardwired stream index ofO.
Control Registers and SRAM share a common address space
so control registers make corresponding locations in SRAM
inaccessible.

Inline data conversion module Control Registers are the
basic control interface for the Inline data conversion module
104. Partial writes are allowed and must be supported.

SRAM
Offset Field Name Bits Comment

0- OxfS PCI/PCI-X Config Space
Ox100 BAR Size Mask 63:17 1 ~> bit in BAR can be set

reserved 16
Ox44 Assert 15 Ox44 Register ~~ Oxffffffff
Ox40 Assert 14 Ox40 Register ~~ Oxffffffff
Priority FIFO Assert 13 Priority Head ! ~ Tail
Primary FIFO Assert 12 Primary Head ! ~ Tail
reserved 11
lop Int Enable 10 lop interrupt assertion
Host Int Enable 9 IntA# assertion
Retry Disable
SERR Assert Int En 7 SERR asserted to Host
SERR Detect Int En SERR detected
PERR Assert Int En PERR asserted to Host
PERR Detect Int En 4 PERR detected
Ox44 Int Enable Ox44 Register ~~ Oxffffffff
Ox40 Int Enable 2 Ox40 Register ~~ Oxffffffff
Priority FIFO Int En Priority Head ! ~ Tail

Primary FIFO Int En 0 Primary Head ! ~ Tail
Ox108 Ox44 Register 63:32 Host read sets Oxffffffff

Ox40 Register 31:0 Host read sets Oxffffffff
Ox11O FIFO Base 63:48 in 64K units

FIFO Last 47:32 last index
FIFO Head 31:16 index a f head
FIFO Tail 15:0 index a f tail

Ox 11 8 FIFO Base 63:48 in 64K units
FIFO Last 47:32 last index
FIFO Head 31:16 index a f head
FIFO Tail 15:0 index a f tail

Ox120 Status 63:60 ! ~ 0 complete

Control 59:56 xxxI => intelTUpt enable
xxIx ~> fetch next on good

US 7,870,316 Bl
13 14

-continued

Register SRAM
Name Offset Field Name Bits Comment

complete
Link 55:32 next in SRAM
Destination Address 31:0

HTDMAO,1 Ox128 Length 63:45
Source Address 44:0

HTDMAl,O Ox130 Status 63:60 ! ~ 0 complete
Control 59:56 xxxI => interrupt enable

xxIx ~> fetch next on good
complete

Link 55:32 next in SRAM
Destination Address 31:0

HTDMAl,1 Ox138 Length 63:45
Source Address 44:0

CONFIG Ox140 Config Address 63:32 PCI Config Cycle address
Config Data 31:0 Config Space data

Error !nt/Status Ox148 reserved 63:61 Error Interrupt/Status
SRAM Parity Error 60 Write a value of 1 to
Interrupt Enable enable SRAM Parity

Error interrupt
reserved 59:33
SRAM Parity Error 32 Read value of 1 says a
Assert SRAM parity error

occurred. Write a value of
1 to clear latched
condition.

reserved 31:5
SRAM Parity Error Int 4 Read a value of 1 says this

condition is generating an
interrupt.

SERR Int Assert Read value of 1 says this
condition occurred
Write a value of 1 to clear
condition.

SERR Int Detected 2
PERR Int Assert
PERR Int Detected 0

FPGA Ox150 reserved 63:32
Revision

Logic Family 31:24 O~XilinxXDS

1 ~ Unisys Golden Gate
Host IfF Mode 23:16 O~ PCI

1 ~PCI-X
Revision 15:0 Bitstrearn Revision

Note-Indexes are Indexes, not Offsets to the lop, Also, if register Ox44 is not equal to Oxffffffff and
the Host Int Enable bit is set, INTA# is asserted to the Host

The Inline data conversion module Status/Control Register 45

contains the mask for the Host BAR, the Config Retry Disable
bit, and various interrupt enables, Except for Host Int Enable,
interrupt enables refer to lop interrupt(s),

Host Write FIFOs are not real hardware FIFOs, but
describe areas of lop memory that are written in a FIFO
manner, Writes to offset Ox40 write to the Primary FIFO, all
other writes write to the Priority FIFO,

The host interrupt, INTA#, is generated if the Host Int
Enable bit is set and the Ox44 Register!=OxFFFFFFFE

Both the target offset, as well as the data written are written
50 to the FIFO-

lop interrupts are generated only if the lop Int Enable bit is
set and a bit is set in Inline data conversion module Control
Register 7:0,

Host Offset
Host Data

63:32
31:0 Ox44 Register Assert [15: 15] is set whenever the Host Read

Ox44 register has a value ofOxFFFFFFFE 55

Ox40 Register Assert [14: 14] is set whenever the Host Read
Ox40 register has a value ofOxFFFFFFFE

Priority FIFO Assert [13:13] is set whenever the Host Pri­
ority FIFO Head and Host Priority FIFO Tail are not equaL

Primary FIFO Assert [13:13] is set whenever the Host
FIFO Primary Head and Host FIFO Primary Tail are not
equaL

The offset and data are written at the Head of the FIFO, The
HT address is calculated by multiplying the FIFO Head index
by 8 and adding it to the FIFO Base multiplied by 65,536,

60 Software updates the FIFO Tail as it processes FIFO entries,
DMAs can be chained by building chains of control blocks

in SRAM, DMA Control Blocks in SRAM have the same
format as DMA registers,

Host Read Registers actually are the head of an lop imple­
mented FIFOs for passing DWords to the Host from the lop, 65

Whenever a register is not equal to Oxffffffff and its enable bit
and the lop Int Enable bit are set, and an interrupt is generated

A DMA operation is started by software setting the status
field ofa DMA Control Register to zero, If the Length field is
non-zero, the current register values are used, As Length is
decremented to zero and if no error has occurred, the Control

US 7,870,316 Bl
15

field is examined to see if a DMA Control Block must be fetch
and if so, it is fetched and the operation continued, perhaps
with a new stream. Software may set the status to zero with
Length zero and fetch set in the Control field. This will cause
a DMA operation to begin with a load of a DMA Control 5

Block specified in the Link field.

16
The Data FIFO Quad-Word Address registers have a spe­

cial increment function for force/strip tag commands and
VSS2 mode. On force commands the FIFO QWA In register
skips modulo 4=3 locations---e.g. 0, 1,2,4, 5, 6, 8, And,
on strip commands the FIFO QWA Out registers increments
this way.

In VSS2 mode the Quad-word Address is incremented
from 512 modulo 180 to the next 512 byte boundary. On read
type commands the FIFO QWA In register is incremented,

Inline data conversion module SRAM is primarily used to
hold PSWs and DMA control blocks, but it may also contain
debug traces, logs, etc. PSWs are located in lower locations
with other structures above.

Software may place PCI Capabilities in SRAM that a Host
may access through PCI Config Cycles.

10 and on write type commands the FIFO QWA Out register is
incremented. In VSS2 versions of the Transfer Tags Odd/
Even and Force Data/Program Tags operations, the Inline
data conversion module Engine must handle the stripping/ All conventional error detection, handling, and reporting

practices are followed. This includes implementation of
SERR# Enable and Parity Error Response in the PCI Device's 15

Configuration Command Register. Also, the Inline data con­
version module 104 does not exercise the master option of not
asserting PERR# on read data phase parity detection. It does
assert PERR# if Parity Error Response is set.

Beyond the PCI requirements, all data paths and structures 20

are parity protected. However, if a data parity occurs, it must
not be corrected, but must be carried along and delivered to
the ultimate data destination.

Parity errors on control paths and in control structures can
not be pasted along and therefore assert SERR# providing 25

SERR# Enable is set.
The Data FIFO and PCI Target interface present special

challenges to this. The Data FIFO is not written as complete
80 bit word. Instead it is written as discrete 10 bit groups as
specified by the group's byte enable bit. The simple way of 30

handling this is to put parity on each individual group. But, if
the data phase being written has a parity error, each 10 bit
group must now have a forced parity error and any 10 bit
group in error must force a parity error on any data cycle it
becomes a part of. This ensures that even if the groups end up 35

in different host data cycles, each data cycle will have a parity
error forced on it.

The pragmatics of the byte-wise parity of the Data FIFO is
that most all data paths carry byte-wise 10 bit parity. Parity is
converted from the 32 bit Dword parity of PCI to 10 bit 40

byte-wise parity early in the path and back late in the data
path. Otherwise, additional parity checker/generators are
required.

This policy of carrying parity errors through the Inline data
conversion module 104 creates a problem for writes received 45

on the PCI Target interface. Write receive parity (PAR and
PAR64) one clock after the data cycle. This is to allow time for
the generation of PAR and the generation of the check for
PAR. But, this puts PAR behind the data cycle. So, PAR must
be accelerated into its data cycle by the target as illustrated 50

below.
The Inline data conversion module 104 deals with data as

Quad-words. Except in the Barrel and Byte Swap units, quad­
word byte lanes are preserved.

Host mastered cycles are never translated as Packer 55

Streams, but all non-Host mastered Data Cycles are treated as
Packer Streams and address translated. The quad-word por­
tion of the address is translated as described above in Non­
Host Data Cycles.

The Data FIFO is two banks 8 bytes wide each. Each byte 60

is 10 bits wide making the structures 80 bits wide each. The
two extra bits are to support byte-wise parity and a byte valid
bit. The byte valid bit is to track a construct correct byte
enables at Master.

One bank contains odd quad-words and the other even 65

quad-words. Inputs and outputs to the banks are swapped for
odd quad-word addresses, but both are always read/written.

insertion of pad from/to data words that use Xfer Words of 45
through 63.

In force tags mode it is possible that the receiver could
overrun the sender. The Data FIFO must be large enough to
prevent this. In strip tags mode the reverse is true, the sender
could outrun the receiver. The sender delays starting until
25% of the expected transaction size has been received.

Bytes are swapped within quad-words for all transfers
except Untagged.

Byte aligrnnent is simply a shift in a 16 byte wide barrel.
The full 10 bit bytes are shifted.

The byte shift value is derived in one of four ways-

In non-VSS2 force/strip tags mode-Byte Shift~Xfer
Offset % 6+2;

In VSS2 force/strip tags mode-Byte Shift~Xfer
Word % 6+2;

In VSS2 transfer tags odd mode-Byte Shift~4;

In other modes-Byte Shift~O;

The Left shifting Barrel is used for force tags and the Right
shifting Barrel is used for strip tags.

For the Left Barrel, the upper 8 bytes initially enter with
byte enables de-asserted and the lower 8 from the data cycle.
Byte enables fill with de-assertions. In the Left Barrel, byte 7
is connected to byte 10 and byte enable 7 connected to byte
enable 10 during the shift; otherwise the shift is normal, and
the Right Barrel is reversed. The barrel shifts by Byte Shift
defined above. Invalid bytes are not written to the addressed
even or odd bank, but are written to the other bank.

The Left Barrel also sets the proper tag value on force tag
operations. Bytes 0, 1, 8, and 9 are set to valid zeros on Force
Data Tag operations. Bytes 0 and 9 are set to 3 and 1 and 9 set
to 0 on Force Program operations.

A checksum is kept for Packer Stream data. For read type
transaction it is accumulated on the input to the destination
MVX. For write type data it is accumulated at the source
MVX.

A single Host Interrupt Pin is to notify the host that the
FPGA needs servicing by the host. The signal is asserted to
the host if the Ox44 Register has a value that is not
OxFFFFFFFF and the Host Interrupt Enable (bit 9) is set in the
Inline data conversion module Status/Control Register is set
to 1. This interrupt is asserted LOW active to conform to the
INTA# ofPCIIPCI-X.

Host Int Pin~(Ox44_Reg!~OxFFFFFFFF) &&
(HosUnCEnable~ 1)

There are 22 signals between the FPGA and to the CPLD.
These are defined in the CPLD Requirement specification but
are listed here for completeness.

US 7,870,316 Bl
17 18

Signal Name Direction Active State Purpose

CPLD_INTF[O] FPGA <- CPLD High FIB Mode notification from CPLD
CPLD_INTF[l] FPGA -> CPLD High FPGA lOP Reset
CPLD_INTF[2] FPGA -> CPLD High FPGA Debug Signal
CPLD_INTF[3] FPGA -> CPLD High FPGA Error Interrupt
CPLD_INTF[4] FPGA -> CPLD High FPGA lOP Primary FIFO Interrupt
CPLD_INTF[5] FPGA -> CPLD High FPGA lOP Priority FIFO Interrupt
CPLD_INTF[6] FPGA -> CPLD High FPGA lOP Read Reg Ox40 Interrupt
CPLD_INTF[7] FPGA -> CPLD High FPGA lOP Read Reg Ox44 Interrupt
CPLD_INTF[8] FPGA -> CPLD High FPGA HT DMA a Interrupt
CPLD_INTF[9] FPGA -> CPLD High FPGA HT DMA 1 Interrupt
CPLD_INTF[lO] PCI Debug-> Low PRSNTl # signal from PCI debug

FPGA COIlllector
CPLD_INTF[ll] PCI Debug-> Low PRSNT2# signal from PCI debug

FPGA COIlllector
CPLD_INTF[12] FPGA -> CPLD High FPGA signal to CPLD that a

PCI/PCI -X reset has been detected
CPLD_INTF[13:17] FPGA- CPLD undefined Unused signals for future

implementation
DCM_HTLLOCK FPGA->CPLD High FPGA DCM Locked for HTl
DCM_HT2_LOCK FPGA->CPLD High FPGA DCM Locked for HT2
DCM_PCIX_LOCK FPGA->CPLD High FPGA DCM Locked for PCIIPCIX
DCM_SRAM_LOCK FPGA->CPLD High FPGA DCM Locked for SRAM
FPGA_RESELL FPGA<- CPLD Low Signal from CPLD to reset the FPGA

There are 9 signals/pins out of the FPGA used to signal the
board about state within the FPGA. These signals are routed

25

If the Ox40 Register Int Enable is set and Host Read Reg­
ister Ox40 has a value equal to OxFFFFFFFF.

to the CPLD a particular platfonn and most are then routed to
General Purpose I/O and Interrupt pins on the BCM1250. All
signals are level sensitive and are asserted with a high active 30

value.

FPGA lOP Read Reg Ox40 Interrupt~Ox40 Register
Int Enable && (Host Read Reg
Ox40~OxFFFFFFFF)

The FPGA lOP Read Reg Ox44 Interrupt signal is sent to
the CPLD to interrupt the lOP processor for the following
condition:

Derived from bit 16 of the Configuration Register Ox40.
The host can write this bit to induce a reset on the lOP. This
signal does not get routed to a GPIO pin of the BCM1250.

An available signal from the FPGA implementation to 35

signal the lOP processor to take some action. Used for debug.

If the Ox44 Register Int Enable is set and Host Read Reg­
ister Ox44 has a value equal to OxFFFFFFFF.

The FPGA Error Interrupt signal is generated when any of
the following OR' ed collection of error interrupts is detected
by the FPGA. These include:

SRAM Parity Error
SERR Interrupt Assert
SERR Interrupt Detected
PERR Interrupt Asserted
PERR Interrupt Detected

40

FPGA lOP Read Reg Ox44 Interrupt~Ox44 Register
Int Enable && (Host Read Reg
Ox44~OxFFFFFFFF).

The FPGA HT DMA 0 Interrupt signal is sent to the CPLD
to interrupt the lOP processor for the following condition:

If the HTDMAO Status bits (63:60) are non-zero AND the
HT DMA 0 Control bit 56 is set.

See the description of the Error Interrupt Control/Status 45
FPGA HT DMA a Interrupt~(HT DMA a Status(63:

60)!~0) && (HT DMA a Control(56)~1).
register.

The FPGA lOP Primary FIFO Interrupt signal is sent to the
CPLD to interrupt the lOP processor for the following con­
dition:

If the Primary FIFO Int Enable is set to 1 AND the
Host Primary Fifo Head!~Host Primary Fifo Tail.

FPGA lOP Primary FIFO Interrupt~Primary FIFO Int
Enable && (Host Primary Fifo Head!~Host Pri­
mary Fifo Tail).

The FPGA lOP Priority FIFO Interrupt signal is sent to the
CPLD to interrupt the lOP processor for the following con­
dition:

If the Priority FIFO Int Enable is set to 1 AND the
Host Priority Fifo Head!~Host Priority Fifo Tail.

FPGA lOP Priority FIFO Interrupt~Priority FIFO Int
Enable && (Host Priority Fifo Head!~Host Pri­
ority Fifo Tail).

The FPGA HT DMA 1 Interrupt signal is sent to the CPLD
to interrupt the lOP processor for the following condition:

If the HTDMA 1 Status bits (63:60) are non-zero AND the
50 HT DMA 1 Control bit 56 is set.

FPGA HT DMA 1 Interrupt~(HT DMA 1 Status(63:
60)!~0) && (HT DMA 1 Control(56)~1).

FIG. 7 illustrates an example embodiment of a flowchart
55 for a sequence of operations perfonned to implement an

embodiment of the present invention. The processing begins
701 when an inline data conversion processor receives a
packer stream address (PSA) used to define the nature of the
data transfonnation to be performed to a data stream being

60 transferred from a data source to a data destination in opera­
tion 711. The data source and the data destination may include
digital processing and storage devices connected to the inline
data transform processor using a host processor interface, a
peripheral interface and a network interface.

The FPGA lOP Read Reg Ox40 Interrupt signal is sent to 65

the CPLD to interrupt the lOP processor for the following
condition:

The PSA has at least two portions. A first portion of the
PSA is decoded in operation 713 to determine a transforma­
tion definition. The transformation definition specifies the

US 7,870,316 Bl
19

functions that are applied to the data words that are part of an
incoming data stream when generating an outgoing data
stream. A second portion of the PSA is used to generate an
outgoing data address for each word of the outgoing data
stream in operation 715. As noted above in reference to FIG.

20
Unless explicitly stated otherwise, each numerical value

and range should be interpreted as being approximate as if the
word "about" or "approximately" preceded the value of the
value or range.

It will be further understood that various changes in the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain the nature of
this invention may be made by those skilled in the art without
departing from the scope of the invention as expressed in the

5, data may be stored into 512-byte data blocks in multiple
storage fonnats, i.e. VSS1 and VSS2. The outgoing data
address corresponds to the address within these data block
formats when the block of data is received at the data desti­
nation. As such, devices attached to each if the plurality of
interfaces may transmit and receive data in its respective data
block fonnat where the inline data transform processor per­
forms the appropriate addressing transfonnation.

10 following claims.
The use of figure numbers and/or figure reference labels in

the claims is intended to identify one or more possible
embodiments of the claimed subject matter in order to facili­
tate the interpretation of the claims. Such use is not to be

In operation 717, a sequence of data words from within the
incoming data stream is received by the inline data transfonn
processor. This sequence of data words are typically part of a
DMA data transfer operation that moves a data block from
one data device to another data device. The outgoing data
stream is generated in operation 719 by applying the trans­
formation definition to each data word of the incoming data
stream as the data words pass through the inline data trans­
form processor.

15 construed as necessarily limiting the scope of those claims to
the embodiments shown in the corresponding figures.

Although the steps in the following method claims, if any,
are recited in a particular sequence with corresponding label­
ing, unless the claim recitations otherwise imply a particular

20 sequence for implementing some or all of those steps, those
steps are not necessarily intended to be limited to being
implemented in that particular sequence.

Once the data words of the outgoing data stream are gen- 25

erated, the inline data transform processor transmits the data
words to the data destination in operation 721. This process of
operations is performed upon each data word within the
incoming data stream to generate a corresponding set of out­
going data words in the outgoing data stream. The processing 30

ends 702 when the entire set of outgoing data words are
generated and transmitted to the data destination.

Reference herein to "one embodiment" or "an embodi­
ment" means that a particular feature, structure, or character­
istic described in connection with the embodiment can be 35

included in at least one embodiment of the invention. The
appearances of the phrase "in one embodiment" in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi­
ments necessarily mutually exclusive of other embodiments. 40

The present invention can be embodied in the fonn of
methods and apparatuses for practicing those methods. The
present invention can also be embodied in the form of pro­
gram code embodied in tangible media, such as floppy dis- 45

kettes, CD-ROMs, hard drives, or any other machine-read­
able storage medium, wherein, when the program code is
loaded into and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing the inven­
tion. The present invention can also be embodied in the fonn 50

of program code, for example, whether stored in a storage
medium, loaded into and/or executed by a machine, or trans­
mitted over some transmission medium or carrier, such as
over electrical wiring or cabling, through fiber optics, or via
electromagnetic radiation, wherein, when the program code 55

is loaded into and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing the inven­
tion. When implemented on a general-purpose processor, the
program code segments combine with the processor to pro­
vide a unique device that operates analogously to specific 60

logic circuits.

The present invention can also be embodied in the form of
a bitstream or other sequence of signal values electrically or
optically transmitted through a medium, stored magnetic­
field variations in a magnetic recording medium, etc., gener- 65

ated using a method and/or an apparatus of the present inven-
tion.

We claim:
1. An apparatus for providing an inline data conversion

processor to a computing system to receive an incoming data
stream and a packer stream address (PSA) and to generate an
outgoing data stream, the apparatus comprising:

a host processor interface for connecting the apparatus to a
host processing unit within the computing system;

a network interface for connecting the apparatus to a com­
munications network within the computing system;

a peripheral interface for connecting the apparatus to a
peripheral device within the computing system;

a stream decode module for decoding a first portion of the
PSA to generate a transformation definition;

an address generation module for decoding a second por­
tion of the PSA to generate an outgoing data address
associated with each data word of the outgoing data
stream; and

a data transfonn module for generating the outgoing data
stream from the incoming data stream using the trans­
fonnation definition.

2. The apparatus according to claim 1, wherein the trans­
formation definition comprises a byte swap definition corre­
sponding to transfonning the incoming data stream to the
outgoing data stream by switching the byte order between a
big endian byte order and a little endian byte order.

3. The apparatus according to claim 2, wherein the trans­
formation definition further comprises a remote selection
definition corresponding to selecting between the plurality of
data input interfaces for use in generation of the output data
stream.

4. The apparatus according to claim 3, wherein the trans­
formation definition further comprises a non-data byte order
transfonnation definition corresponding to a definition of a
functional data transformation applied to the incoming data
stream to generate the outgoing data stream.

5. The apparatus according to claim 1, wherein the outgo­
ing data stream is generated by data transform module apply­
ing the transfonnation definition to each data word of the
incoming data stream during successive data transfer cycles
of a DMA data transfer operation.

6. The apparatus according to claim 1, wherein the plurality
of data interfaces provide data correspond to a 180-byte data
blocks defined by 30 six-byte, 48 bit data words.

US 7,870,316 Bl
21

7. The apparatus according to claim 6, wherein the 180-
byte data blocks are stored within contiguous storage blocks
within 512-byte data blocks.

8. The apparatus according to claim 6, wherein two 180-
byte data blocks are stored within each storage blocks, the
storage blocks correspond to 512-byte data blocks.

9. The apparatus according to claim 8, wherein the outgo­
ing data address generated by the address generation module
corresponds to storage addresses within the 180-byte data
blocks.

10. A method for providing an inline data conversion pro­
cessing upon an incoming data stream as part of a data trans­
fer, the method comprising:

22
20. The method according to claim 18, wherein two 180-

byte data blocks are stored within each storage blocks, the
storage blocks correspond to 512-byte data blocks.

21. A digital data storage media containing encoded data
corresponding to instructions for a programmable processor
implementing a method for providing an inline data conver­
sion processing upon an incoming data stream as part of a data
transfer, the method comprising:

receiving a packer stream address (PSA) associated with a
10 transformation performed upon the incoming data

stream;

receiving a packer stream address (PSA) associated with a
transformation performed upon the incoming data 15

decoding a first portion of the PSA to determine a trans­
formation definition of the transformation performed
upon the incoming data stream;

generating an outgoing data address associated with an
outgoing data stream from a second portion of the PSA;

receiving the incoming data stream from a data source;
generating the outgoing data stream by applying the trans­

formation definition to the incoming data stream; and
transmitting the outgoing data stream to a data destination.
22. The digital data storage media according to claim 21,

wherein the data source comprises a digital data device

stream;
decoding a first portion of the PSA to determine a trans­

formation definition of the transformation performed
upon the incoming data stream;

generating an outgoing data address associated with each
data word of an outgoing data stream from a second
portion of the PSA;

receiving the incoming data stream from a data source;
generating the outgoing data stream by applying the trans­

formation definition to the incoming data stream; and
transmitting the outgoing data stream to a data destination.
11. The method according to claim 10, wherein the data

source comprises a digital data device attached to one of a
plurality of data interfaces.

12. The method according to claim 11, wherein the data
destination comprises a digital data device attached to one of
the plurality of data interfaces.

20

attached to one of a plurality of data interfaces.
23. The digital data storage media according to claim 22,

25 wherein the data destination comprises a digital data device
attached to one of the plurality of data interfaces.

24. The digital data storage media according to claim 23,
wherein the plurality of data interfaces comprises a host pro­
cessor interface, a network interface, and a peripheral inter-

30 face.

13. The method according to claim 12, wherein the plural- 35

ity of data interfaces comprises a host processor interface, a
network interface, and a peripheral interface.

25. The digital data storage media according to claim 22,
wherein the transformation definition comprises a byte swap
definition corresponding to transforming the incoming data
stream to the outgoing data stream by switching the byte order
between a big endian byte order and a little endian byte order.

26. The digital data storage media according to claim 25,
wherein the transformation definition further comprises a
remote selection definition corresponding to selecting
between the plurality of data input interfaces for use in gen-

14. The method according to claim 11, wherein the trans­
formation definition comprises a byte swap definition corre­
sponding to transforming the incoming data stream to the
outgoing data stream by switching the byte order between a
big endian byte order and a little endian byte order.

15. The method according to claim 14, wherein the trans­
formation definition further comprises a remote selection
definition corresponding to selecting between the plurality of
data input interfaces for use in generation of the output data
stream.

16. The method according to claim 15, wherein the trans­
formation definition further comprises a non-data byte order
transformation definition corresponding to a definition of a
functional data transformation applied to the incoming data
stream to generate the outgoing data stream.

40 eration of the output data stream.
27. The digital data storage media according to claim 26,

wherein the transformation definition further comprises a
non-data byte order transformation definition corresponding
to a definition of a functional data transformation applied to

45 the incoming data stream to generate the outgoing data
stream.

28. The digital data storage media according to claim 21,
wherein the outgoing data stream is generated by applying the
transformation definition to the incoming data stream during

50 successive data transfer cycles of a DMA data transfer option.

17. The method according to claim 10, wherein the outgo­
ing data stream is generated by applying the transformation
definition to the incoming data stream during successive data 55

transfer cycles of a DMA data transfer operation.

29. The digital data storage media according to claim 22,
wherein the plurality of data interfaces provide data corre­
spond to a 180-byte data blocks defined by 30 six-byte, 48 bit
data words.

30. The digital data storage media according to claim 29,
wherein the 180-byte data blocks are stored within contigu­
ous storage blocks within 512-byte data blocks. 18. The method according to claim 11, wherein the plural­

ity of data interfaces provide data correspond to a 180-byte
data blocks defined by 30 six-byte, 48 bit data words.

19. The method according to claim 18, wherein the 180-
byte data blocks are stored within contiguous storage blocks
within 512-byte data blocks.

31. The digital data storage media according to claim 30,
wherein two 180-byte data blocks are stored within each

60 storage blocks, the storage blocks correspond to 512-byte
data blocks.

* * * * *

	DImg
	DImg-1
	DImg-2
	DImg-3
	DImg-4
	DImg-5
	DImg-6
	DImg-7
	DImg-8
	DImg-9
	DImg-10
	DImg-11
	DImg-12
	DImg-13
	DImg-14
	DImg-15
	DImg-16
	DImg-17
	DImg-18

