12 United States Patent

Jennings et al.

US009201635B2

US 9,201,635 B2
Dec. 1, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

JUST-IN-TIME DYNAMIC TRANSLATION
FOR TRANSLATION, COMPILATION, AND
EXECUTION OF NON-NATIVE
INSTRUCTIONS

Applicants: Andrew T Jennings, Minnetonka, MN
(US); Charles R Caldarale, Roseville,

MN (US); Kevin Harris, Roseville, MN
(US); Maurice Marks, Roseville, MN
(US)

Inventors: Andrew T Jennings, Minnetonka, MN
(US); Charles R Caldarale, Roseville,

MN (US); Kevin Harris, Roseville, MN
(US); Maurice Marks, Roseville, MN

(US)
Assignee: Unisys Corporation, Blue Bell, PA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/143,285

Filed: Dec. 30, 2013
Prior Publication Data
US 2015/0277861 Al Oct. 1, 2015
Int. CIl.
GOo6F 9/45 (2006.01)
GO6F 9/455 (2006.01)
U.S. CL
CPC .............. GOo6l’ 8/41 (2013.01); GO6F 9/45558

(2013.01); GOGF 2009/4557 (2013.01)

(38) Field of Classification Search

CPC e e, GO6F 8/41
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,272,453 B1* 82001 Hoengetal. ... 703/27
6,463,582 B1* 10/2002 Lethmmetal. ................. 717/158
6,651,080 B1* 11/2003 Liangetal. .........c.ccoocn . 718/1
7,788,657 B2* 82010 Wannamaker et al. ....... 717/158
2004/0243989 Al* 12/2004 Owensetal. ................. 717/151
2013/0067441 Al* 3/2013 Lafreniere etal. ............ 717/139

* cited by examiner

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Richard J. Gregson

(57) ABSTRACT

A method for executing non-native instructions in a comput-
ing system having a processor configured to execute native
instructions may include fetching a first non-native instruc-
tion from a plurality of non-native instructions; interpreting
the first non-native instruction to generate a first instruction
code; compiling the first instruction code to generate a {first
native 1struction corresponding to the first non-native
instruction; determining whether to execute the first mstruc-
tion code or the generated first native mnstruction; and imple-
menting a first virtual machine mstruction corresponding to
the first non-native instruction based, at least 1n part, on
determining whether to execute the first instruction code or
the first native mstruction.

18 Claims, 23 Drawing Sheets

FETCHING A FIRST NON-NATIVE 703
INSTRUCTION FROM A PLURALITY OF NON-
NATIVE INSTRUCTIONS

INTEEPRETING THE FIRST NON-NATIVE 764
INSTRUCTION TO GENERATE A FIRNT

INSTRUCTION (0D

COMPILING THE FIRST INSTRUCTION CODE 06
TOQ GENERATE A FIRST NATIVE INSTRUCTION
DETERMINING WHETHER TO EXECUTE THE 702
FIRST INSTRUCTION CGDE OR THE
GENERATED FIRST NATIVE INSTRUCTION
IMPLEMENTING A FIRST VIRTUAL MACHINE o71g

NS TRUCTION CORRESPONDING TO THE
FIRST NON-NATIVE INSTRUCTEOMN




U.S. Patent Dec. 1, 2015 Sheet 1 of 23 US 9,201,635 B2

104

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Memory Buffer

5 Native E
&pphaatmns 108

110

Eﬂstruatam Proaessm Emuiam 120

T )

Non-Native
Memory 118

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

- Non-Native &
 Applications 116 &




U.S. Patent

NO

20

Dec. 1, 2015 Sheet 2 of 23 US 9,201,635 B2

......... 232
Load ICLP Bank
' e 2@4
Fetch Non-Native instruction
......... 2@6

Execute Non-Native
instruction

__________ 208
Siop
Emulator?
Yes
210




U.S. Patent Dec. 1, 2015 Sheet 3 of 23 US 9,201,635 B2

s 302
L oad ICLP Bank

L& | i
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

304

/" memory been "\
N bank?

NO

Jp— 210}

interpret

s st retion? P @Gt Feteh Non-Native instruction
N RRLE 4 E

NQ 322 é e 314

intergret Non-Native

Fxecute -Code .
nstruction

Stop
instruction
NProcesssords

. Generate and store I-Code in

shadow memory

300

FiG. 3

j( Yes
. N 2320




S. Patent Dec. 1, 2015 Sheet 4 of 23 US 9.201.635 B2

ol
W
-
1
I -
L 4
] 5
1
r - -l wry -y 4
I : !
" - = L 4
L 4
]
1
I h:
h !
h - u N
] N q 3
i cm . .,
h " !
. "
] 5
1
] 3
4 gl
R I L P T P L L T L T T L e T e e T T L T e T e L T R R R R R A R R R R R R R R R R R R R R R R R R R R R R R R A R R R R R R R R R R R R N R
T e T e T e T T T T T T T T T e T T T T T T T T T T T T T T e T T e T e T e T T T T o T T T T T T T T T T T T T T T T T T T T TP T T T P T T T T T T T T *
g
N ,
1
] ,
1
| a i ™ r
] - -
1
: ! - -t - o n L ] - k ] - L T = X 4
]
| ,
1
J !
1
N !
L = = H ”~ L
1
. ) |
" 1
L
! " 1 -
N !
1
] 5
1
5 1
a
N !
1
. ;
1
i
1
J !
a
N !
1
. )
1
]
1
] ,
a
] ,
1
. )
1
]
. SuA 5
'
; 4
L 4
]
1
: 3
-l---ll--ll---l---I---I---l---l---l---l---I---I---II--II---l---l---l---I---I---l---l---l---l---Il--II---I---l---l---l---l-_
NP M M M R o om oW R o nwowom omomowomomowowowom o m e e w R m m w o w o wmom o r omom oW R omomow o oRwomowom owowowonwowom s o S N N N P W MW R WM oW R WM W S om o wow rom oW oW W omow oW oW R owowow o= oo o= o= +
T T T PP AP AP
I .
] r L | .
I r‘E {‘Qi i? ! % HTHVE ..-{q . i §
. ‘j :
b
: - - - ' - "l--’ - - - .
H H L+
. |,
F
] 5
k
: k| = g r
" h i h - [ £ 3] ‘ & = ¥ - > R+
' o '
L+
| ! o ! - + W X
] ,
b
. |,
b
. .8
(= B E N L EEE L NN L L L LE L L EE L EEE Ll Ll R LR LR L L E L B Ll LN Ll LR L L o e a mal r
4 rTTTraiTTriTTT I TTTAITTT"TTT-"TTT-TTT-TTTS-TTTEFPETTTFIFTTTrIRATTIATTTATSTTATTY S TTT-TTT-TTTS-TTTEIETTTIRTTTCIETTTIRATTIFATSTTATTTAOTT"TYT-—TTT - 7%
L -
SRR AR AR AN
N L =
. s
3 ol
-
-l
Fn
-l. -.
L il
- K>
K s -
- [ )
ol - KL
-f"!I - K .
f = - [ g
2 K- -
- »
. [ :
L-
L
- ': LS :
e dur = ||" -
L=
- "o
L o}
- L -
-. I -
-. I -
L DN N R N T N N T N - NN N N NN NN N . LR IR R NS N -:-_-:_-:_-:_-:-_-:_-I R LN U N B +
! -. I -
3 . 1 A
. I a N - 4, -
| - K
- [ = 1 n . o) -
3 3 L -
) - g -
X - [ ) _
' - [ .
3 a 3 " :
, !'E i” , n.
»
, , K-
"
3 3 o
»
|, |, .
»
! ! n.
5 5 -
»
K-
»
- : ) . X,
] s a . N ..
:'-. . L - g -
[ B L L] g >
, 1 "
:_ - L
. L - g -
& K- g - ?
n . n K " ' '
. - N
A . - g -
I' L - L -
l. , - L -
. - L -
L - g -
i
LI N L E E R R E R EE EE R E R EE R R R - R R R R EE R EE X LB N NN N N NN N N R N R L R R R FEE I B R L R N B
) - L
- L -
y - - L -
™ - ..
-u: ) - "
= 1 L] g >
- L -
- L -
) . L~
3 - g -
- L -
- »
. . L~
- L -
- L =
- »
> L -
"} - - - - - - - - - - - 0 - - - - - - - 0 - - - 0 - - - - - Ty "y - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N -
, , - L -
N ) * b
1, 1, £ L -
L L - g -
. . - g -
. L - »
. , 1 o
L L - g
L L - L -
N L o L -
. 3 ' “l
L L L] g >
L L - g
L L - g -
. ., 1 “l
) - L
L L L] g >
I T e e S e e e T e e e e T I e b T S e e T e e b T e e i T b e T ettt et e e s e = '
- »
, , , L3 H
, [ k] , : , o H
\ N \ \ - .
e ] . - B
" " " +* -
! ! : ! * b
L L L - .
) - »
L L L - =
L - L L - »
, = , i , - -
, , , - -
5 5 5 - -
5 5 5 - -
3 3 i 3 - -
L L i L . Al
B R R L R R R R R R e A I R N A R A R R A A A R L R I I I R I I I R R I I O T

Non-Native Caode Shadow Memory

FlG. 4A



U.S. Patent Dec. 1, 2015 Sheet 5 of 23 US 9,201,635 B2

Precomupiled Native Code Sequence 1

tFor Non-Native Instruction 13

Frecompiled Native Code Sequence 2
(For Non-Native Instruction 23

Precompiied Native Code Sequence N
{For Non-Native instruction N)

Non-MNative

instruction

NOoNn-Mative
Instruction

MNon-Native
instruction

Non-Nalive
instruction

Non-iNative
instruction

..................

instruction Processor}
- Emulator 120

_________________________________________________________

400



U.S. Patent Dec. 1, 2015 Sheet 6 of 23 US 9,201,635 B2

Frecomupiied Native Code Sequence 1
tFor Non-Native Instruction 1)

Frecompiled Native Code Sequence 2Z
(For Non-Native instruction 23

Precompiled Native Code Seguence N
{For Non-Native Instruction N}

|
|
;
|
|
|
!

NOon-MNative
instruction

Dointer €
MNOon-Mative
instruction

||||||||||||||||||||||||||||||||||||||||||||||||||
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Non-Native
Instruction

Non-Native
insiruction

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

<
++++++++++++++++++++++++++++++++++++++++++++++++++++++++

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
m, '

Shadow Memory

S ik Interpreted Mode Output
""""""""""" * {For Execution on Native
Processor)

400 FG. 40



S. Patent

Non-Native N

instruction

T L .

| Nan-Native
| Instruction

von-Native ‘-
instruction

A R

| Non-

MNOon-Nat

Instruct:

R I A I A I R R

alive |
| nstruction

Dec. 1, 2015

Sheet 7 0of 23

Precompiled Nat
For Nan-Nat

Precompiled Nat

For Non-Nat

US 9,201,635 B2

wve Code Sequence |
wve instruction 2 ;

Precomptied Native Code Seqguence N

For Non-Native Instruction N

. .
- - . F
= w
A i ..
" . L
. "l
. o
. u, .+ o, " '
m, | = - L
L] L = - 1
L} .+ -' !
[ & L 0 .
) L = I X
-, K - - 1,
W m W W W mm om e ] ™, o , ,
u, - X -
hd . W
'm, . .
S L - .. X
', Y- .
] _. .l:- ..
u, = I 5
- 3 . =
Lo * o - 5
- L L
oL * o - 5
- L L
' L} +* N !
-, . N. .
- . m - u- )
|, - L = I X
m > ol . Y- .
. L - ~ - .
. | o, LW - - u X L H
. | L W R R . B L R = A o R ]
L | ‘) . 1- N~ -
. - . -, ~ .
) 'm, > Y- .
, ] .Q.. u .l:- -
- u, = 5
- - .
L u, - 5
- \- .
L u, * 5
- ! n, L =
X -, y - - X " -
- ‘] e . " -
- .- | L] X
L L * X
L | = 1 -
" - - -, - %
) ', - Y- .
' ) -, ' %
) ', - Y- .
. - . -, ~ X
) 'm, > Y- .
. - . -, .-\. X
', > Y- .
N - - L ] 5 ;
< - m, - X
L - . =
< - m, - X
L - 1 L
e --------- . .-------- T i iy T T NS " L i i "y iy " I W Y e e " " " e " N L T i "y "y "N " N ) L T i "y i "N " N ) N e i i e e e Y L T i Wi i L N L W ) T i i Wi i N W W
-, ' 3
1 - T O T T T T O T I T T O P T e 3 P P e L T I T T T . D R T T
a -, - I A T I - A N A A A I I A R A A A A e
] - - [ * N .
| = 1 -
b . - ~ - - .
', - Y- .
- - ~ - - .
', - Y- .
3 - ' W W
'm, > Y- .
. - N -, .-\. .. X
4 - L ] L | £ _-a- K
. . .
™1 = u .'ﬂ' .
+ L u, - - - 5
H - n, ) - '
-, "] - = L 3 N N
i o - u, + A - 5
-, N. .
< o - u, = I 5
-, N. .
< o - L * a - 5
+ - +' u, - o - .
m, - ] .
b - - ~ - - .
', - Y- .
' ) -, ' X X
'm, > Y- .
. - . -, .-\. .. X
', > Y- .
M LY 3 S " - e NN NN N L L LY 3 L LY L L L Y L Y L L LY L L LY LT L LY L L L LY LY
m, ] ,
- . . .
1 [l o u .+ -
+ L u, - - - 5
L - . N -
< - m, - N - X
L - L) L
i o - u, * A - 5
-, ' )
< LI u, = I 5
-, N. .
< o - L * a - 5
+ - +' u, - o - .
. -, ":'. -, L y - - .
L | ] 1 -
b , - h N W
L m, ] 1 -
' ) -, ' X X
) ', > Y- .
- . -, ~ .. X
X m > Y- .
. 'm - .
| = - X, -
| ] N -
. L} * . !
- - .
o - u, * A - 5
L - L) L
LI u, = I 5
) -, N. .
o - u, * I 5
) -, Y. .
- - u, - o - 5
L ] o - X
) +_ -a-__-a-__-a-__:-__-__-c__-c__-a-__-a-_-a-_-a-_-a-_-a-__-a-__:-__:-__-__-c__-a-__-a-_-a-_-a-_-a-_-a-__-a-__-a-__:-__-__-c__-c__-a-__-a- T i T i N Y v-a-_+_+_-a-_-a-__-a-__:-__-__-__-c__-a-__-a-_-a-_-:-_-:-_-:-__-:-__:-__:-__-__-:__-:-__-a-__-a-_+_+_+_-a-__+__:-__-__ L N R R L
m, 'md -
L - .
m, ]
) -,
m, ]
- . -,
| = -
| 4
, m,
-,
L |
-,
L |
-, '
L |
-,
L m,
L ] L -
| 2
) -,
m, 3
) -,
m, 3
) -,
m, 3
3 -,
| 1 -
| 4 -
| 2
L |
-,
L |
-, '
L |
-,
L m,
-,
L m,
L ] N -
m, 3
) -,
m, 3
) -,
m, 3
3 -,
| 1
) -,
| 4 -
| 2
L |
-,
L |
-,
L |
-, '
L m,
-,
L m,
L ] N -
] 3
L |
m, 3
) -,
m, 3
3 -,
| 1
n, L
n, L
n 3
- |,
‘-, "]
- ,
- ,
L] '] .
L] g
n, =
n, L
n, L
n, L
n 3
- |,
- |,
-, ]
- ,
L] ']
L] -
n, =
n, L
n, L
n, L
m, ']
n 3
- |,
-, ]
-, ]
- ,
L] -
n, =
n, L
n, L
n, L
) n ] v,
3 - L T
L - L T
, ™, “m ]
Moo e = -
A .

nstruction Processori

| Emulator 120 ?

bk ok ook o bom o4 o d ok ok ok ok ok ok ko ko omod o kok ko ok k ok kD omogoy EETETTETETYTTEFRF®PTTTYTTYTTTRTYYLP"S =y

FiG. 40



U.S. Patent

314

Dec. 1, 2015 Sheet 8 of 23

NON-NATIVE
INSTRUCTION
STREA

INSTRUCTION CODE
GENERATOR

HADOW M

M

INSTRUCTION CODE

~MORY

OPTIMIZATHON

HXBECUTION ENGINDE

FIG. 5

302

304

US 9,201,635 B2

T COMPILER



U.S. Patent Dec. 1, 2015 Sheet 9 of 23 US 9,201,635 B2

602 634

INSTRUCTION

TEE R mFe
CODES BUILD CFG

HU3

oUH BASIC BLOCKS OPTIMIZE BASIC
AND BEDGES BLOCKS

617 CREATE COMPILER UPBDATE BASIC 510
INTERMEDIATE BLAOCKS AND

REPRENENTATION HIGES
616

514 COMPILER BASIC COMPIHILER OPTIMIZATION
BLOCKS AND PASSES AND CODE
EDGES GENERATION

618 NATIVE
INSTRUCTIONS

FIG. 6



U.S. Patent Dec. 1, 2015 Sheet 10 of 23 US 9,201,635 B2

T80

START

FETCHING A FIRST NON-NATIVE 70
INSTRUCTION FROM A PLURALITY OF NON-
NATIVE INSTRUCTIONS

INTERPRETING THE FIRST NON-NATIVE 104
INSTRUCTION TO GENERATE A FIRST
INSTRUCTION CODE
COMPILING THE FIRST INSTRUCTION CODE 706
TO GENERATE A FIRST NATIVE INSTRUCTION
DETERMINING WHETHER TO EXECUTE THE 708

FIRST INSTRUCTION CODE OR THE
GENERATED FIRNT NATIVE INSTRUUTION

IMPLEMEBENTING A FIRST VIRTUAL MACHINE 710
INSTRUCTION CORRESPONDING TO THE
FIRST NON-NATIVE INSTRUCTION

FIG. 7



U.S. Patent Dec. 1, 2015 Sheet 11 of 23 US 9,201,635 B2

B¢

START

ETCHING A NON-NATIVE INSTRUCTION -
FROM A PLURALITY OF NON-NATIVE
INSTRUCTIONS

INTERPRETING THE NON-NATIVE 204
INSTRUCTION TO GENERATE AN
INSTRUCTION CODE

DETERMINING IF THE INSTRUCTION CODE 806
SATISFIES A CRITERIA WHICH PROHIBITN

COMPILATION OF THE INSTRUCTION CODE

PROHIBITING COMPILATION OF THE 208
INSTRUCTION CODRE I THE CRITERIA IS
DETERMINED TO BE SATISHFIED

IMPLEMENTING A VIRTUAL MACHINE 210
ENSTRUCTION CORRESPONDING TO THE NON-
NATIVE INSTRUCTHON

FIG. 8



U.S. Patent

Dec. 1, 2015 Sheet 12 of 23

NTART

IDENTIFYING A PLURALITY OF PROCESSING
RESMIURCES AVAILABLE FOR A DYNAMIC

I3

TRANSLATOR

FEDICATING A FIRST PROCESSING CORE OF

THE PLURALITY OF PROCESSING RESOURCES

TO A JUST-IN-TIME (T COMPILER
ASSOCIATED WITH THE DYNAMIC
FTRANSLATOR

DEDICATING A SECOND PROCESSING CORE
OF THE PLURALITY OF PROCESSING
RESOURCES TO AN INGTRUCTION
PROCESSOR (IP) ASSOCIATED WITH THE
DYNAMIC TRANSLATOR

FIG. 9

US 9,201,635 B2

9072

W4

906



U.S. Patent Dec. 1, 2015 Sheet 13 of 23 US 9,201,635 B2

1000

START

INTERPRETING A NON-NATIVE INSTRUCTION [1002
TO GENERATE AN INSTRUCTION CODE

COMPILING THE INSTRUCTION CODE TO 1004
GENERATE A NATIVE INSTRUCTION

DETECTING A MODIFICATION TO THE 1006
INSTRUCTION CODE ”

INVALIDATING A NATIVE CODE FRAGMENT {008
ASSOCIATED WITH THE INSTRUCTION CODE
UPON DETECTING THE MODRIFICATION TO
THE INSTRUCTION CUODE

REINTERPRETING THE NON-NATIVE _
INSTRUCTION TO REGENERATE THE 1610

INSTRUCTION CODE, THEREBY GENERATING
AN UPDATED INSTRUCTION CODE

FIG. 10



U.S. Patent Dec. 1, 2015 Sheet 14 of 23 US 9,201,635 B2

1106

MONITORING OPERATIONS OF A DYNAMIC
TRANSLATOR, WHERFEIN THE DYNAMIC 1100
TRANSLATOR USES INSTRUCTION CODE

TRANSLATION IN PARALLEL WITH JUST-IN-
TIME (JIT) COMPILATION

PINPLAYING THE MONITORED OPERATIONS 1104
AT A USNER INTERFACE

RECEIVING INPUT AT THE USER INTERFACE,
WHEREIN THE INPUT SPECIFIES CONTROL 1106
PARAMETERS THAT SET THE OPERATION OF
FTHE DYNAMIC TRANSLATOR

SETTING THE OPERATION OF THE DYNAMIC 1105
TRANSLATOR BASED, AT LEAST IN PART, ON
THE RECEIVED INPUT

FIG. 11




U.S. Patent Dec. 1, 2015 Sheet 15 of 23 US 9,201,635 B2

1200
\ START

INTERPRETING A FIRST NON-NATIVE 1907
INSTRUCTION TO GENERATE A FIRST
INSTRUCTION CODE

IDENTIFYING A PLURALTY OF INSIRUCTION
CORES REACHABLE BY THE FIRST 1204
INSTRUCTION CODE

ANSHGNING TO A FIRST GROUP OF 1206
INSTRUCTION CODES THE FIRMNT
INSTRUCTION CODE AND THE IDENTIFIED
PLURALITY OF INNIRUCTION CODES

COMPILING THE FIRST GROUP OF N
INSTRUCTION CODES TO GENEFRATE 1208
NATIVE INSTRUCTION PATH

FIG. 12



U.S. Patent Dec. 1, 2015 Sheet 16 of 23 US 9,201,635 B2

1300

)

STORING AN ADDRESS OF A TARGET 1302
INSTRUCTION CODBE POINTED TO BY A FIRST
INSTRUCTION CODE

{DENTIHIFYING WHEN A SECOND INSTRUCTION
CODE AT THE ADDRESS OF THE TARGET
INSTRUCTION CODE IS5 SCHEDULED FOR

EXECUTION

DETERMINING IF THE SECOND INSTRUCTION 1306
CODE IS AVAILABLE AT THE ADDRESS OF
THE TARGET INSTRUCTION CODE POINTED
PO BY THE FIRST INSTRUCTION CODE

COMPILING AT LEAST THE FIRST 108
INSTRUCTION CODE AND THE SECOND

INSTRUCTION CODE AS A GROUP 10
GENERATE A NATIVE INSTRUCTION PATH

FIG. 13



U.S. Patent

1400

Dec. 1, 2015

START

Sheet 17 of 23

IMPLEMENTING A VIRTUAL MACHINE

INSTRUCTION CORI

INMTRUCTION, WE

t"“SP()"\I JING TO A FIRST
EREIN THE FIRMNT

INSTRUCTION POINTS iU AN ADDRENS (OF A

SECOND INSTRUCTHON TO BE BEX

DETERMINING IF AN ADDRESS IN THE
FCOND INSTRUCTION IS AN ADDRESS OF A
TARGET OPERAND OR POINTS TO THE

ECUTED

ADDRES S OF THE TARGET OPERAND

RETRIEVING TH

IMPLEMENTING THE R

B TARGET

OPERAND

FIG. 14

OPE

RAND

TRIEVED TARGET

US 9,201,635 B2

1402

{404

1406

1408



U.S. Patent

Dec. 1, 2015 Sheet 18 of 23

1500

)

IMPLEMENTING A FIRST VIRTUAL MACHINE
INSTRUCTION BY EXECUTING A FIRST
NATIVE INSTRUCTION PART OF A NATIVE
INSTRUCTION PATH GENERATED BY
COMPILING A GROUP OF INSTRUCTION
CODES

DETERMINING F THE NEXT INSTRUCTHON IN
LANE FOR EXBECUTHON COMPRINES A SECOND
NATIVE INSTRUCTION IN THE NATIVE

INSTRUCTION PATH OR A NON-COMPILED
INSTRUCTION CODE

IMPLEMENTING A BECOND VIRTUAL
MACHINE INSTRUCUTION BY EXECUTING THE
NON-COMPILED INSTRUCTION CODE [FIT 15
DETERMINED THAT THE NEXT INSTRUCTION

iIN LINE FOR EXECUTION Is THE NON-

COMPILED INSTRUCTION CODE

FIG. 15

US 9,201,635 B2

1504

1506



U.S. Patent

Dec. 1, 2015 Sheet 19 of 23

1600

RECEIVING AN INPUT AT A USER INTERFACE,

)

WHEREIN THE INPUT SPECIFIES WHETHER TO
OPERATE THE DYNAMIC TRANSLATOR IN
SYNCHRONOUS MODE OR ASYNCHRONQUS

OP

MODE

ERATING THE DYNAMIC TRANSLATOR IN

ONE OF SYNCHRONOUS MODE OK

ASYNCHRONOUS MODE BASED, AT LEAST IN

PART, ONTHE RECEIVED INPUT

US 9,201,635 B2

1642

1604



U.S. Patent

Dec. 1, 2015 Sheet 20 of 23

START

DETRECTING A FIRST EXECUTION INTERRUPT
WHILE EXBECUTING A FIRST INSTRUCTION
CODE IN AN EMULATION ENVIRONMENT

SAVING AN EMULATION ENVIRONMENT
STATE TO A MEMORY

PROCESSING THE FIRST EXECUTION
INTERRUPT

RETRIEVING THE SAVED EMULATION
ENVIRONMENT 5TATE

EXECUTING A SECOND INSTRUCTION CODE
BASED, AT LEAST IN PART, ON THE
RETRIEVED EMULATION ENVIRONMENT
STATE

FIG. 17

US 9,201,635 B2

f A7

1706

1710



U.S. Patent Dec. 1, 2015 Sheet 21 of 23 US 9,201,635 B2

180

Y

»iorage
Controller
1884

Network User Interface

180

Dicviee

P51

Drata Siorage
1806

FIG. 18



U.S. Patent Dec. 1, 2015 Sheet 22 of 23 US 9,201,635 B2

Data Storage
1912

Conmumunicatlions
Adapter
1914

RAM 103 Adapter
1908 1910

F904

| User {nterface Pnsplay
Adapter Adapter
1916 19272

FIG. 19



U.S. Patent Dec. 1, 2015 Sheet 23 of 23 US 9,201,635 B2

2000

PROGRAM I 2310

ZEIE
EMULATED ENVIRONMENT
INTERFACE ' ZU06

{ommunications
Adapter O/ NETWORKING LAYER
20114

234

OPERATING SYSTEM (O/S)

2002

F1G. 20A

USERZ

PARE! p
2056

'4

HYPERVISUK

25N
HARDWARE

2060

Cormmunications
Adapter

1914

FIG. 20B



US 9,201,635 B2

1

JUST-IN-TIME DYNAMIC TRANSLATION
FOR TRANSLATION, COMPILATION, AND
EXECUTION OF NON-NATIVE
INSTRUCTIONS

FIELD OF DISCLOSUR.

(Ll

The 1nstant disclosure relates to emulated environments.
More specifically, this disclosure relates to a dynamic trans-
lation system that utilizes instruction code translation and
just-in-time (JI'T) compilation.

BACKGROUND

In the past, software applications were supported by main-
frame data processing systems. Such soitware applications
may include those associated with, for example, utility, trans-
portation, {inance, government, and military installations and
infrastructures. Applications were supported by mainframe
systems because mainirames provide a large degree of data
redundancy, enhanced data recoverability features, and
sophisticated data security features.

As smaller “off-the-shelf” commodity data processing sys-
tems such as personal computers (PCs) have increased in
processing power, these PCs have begun providing for these
industry’s data processing needs. Groups of these PCs may be
networked together to increase capability. For mstance, one
or more personal computers may be interconnected to redun-
dantly provide access to “legacy” data that was previously
stored and maintained using a mainirame system. The per-
sonal computers may also be used to update this legacy data.

To assist 1in the conversion of an application from a main-
frame environment to a PC environment, an emulator may
execute on the PC to allow execution of the mainframe appli-
cation without additional work from programmers to make
the mainframe application compatible with a PC. The emu-
lator may perform dynamic translation on a “register-to-reg-
1ster” basis. In other words, the emulator 1s implemented 1n a
loop, where each non-native instruction of the mainframe
application would be fetched, that non-native instruction
would be translated to one or more native instructions per-
forming analogous functionality, and those native instruc-
tions executed, with results then stored in a register or
memory. The emulator would then fetch and execute a sub-
sequent non-native mstruction in the same manner.

Dynamic translation systems have some advantages over
static translation systems, for example in that they do not
require non-native code to be pre-translated to native mnstruc-
tions. Because the particular instructions that will be executed
are generally not known until runtime (when various
branches are computed and assessed), static translation can
result 1n translation of non-native code that 1s not ultimately
executed. However, dynamic translation systems also have
drawbacks. These drawbacks primarily relate to the time
required to translate each non-native instruction to native
instructions during execution of the non-native code. In par-
ticular, dynamic translation requires retrieval and parsing of
non-native structions, to determine the portions of the non-
native istructions that are relevant to the system, including
the opcode, source, and destination data locations (e.g., reg-
isters or memory locations). Once parsed, the correct code
sequence can be selected for use with the corresponding
opcode, and the analogous source and destination storage
locations assessed and used.

10

15

20

25

30

35

40

45

50

55

60

65

2

As such, improvements that would lead to lowered time
required to decode non-native instructions during runtime
translation would be desirable.

SUMMARY

In accordance with the following disclosure, the above and
other 1ssues are addressed by the following.

In a first aspect, a method for executing non-native istruc-
tions 1n a computing system having a processor configured to
execute native mstructions 1s disclosed. The method includes
loading a bank of non-native instructions into memory for
execution on a processor configured to execute native istruc-
tions, and 1nitializing a shadow memory associated with the
bank of non-native instructions. The method further includes
fetching a non-native instruction, and interpreting the non-
native istruction to generate an instruction code to be stored
in the shadow memory. The method also includes selecting,
based on the instruction code, a precompiled code fragment
from which to implement a virtual machine 1nstruction cor-
responding to the non-native istruction.

In a second aspect, a system for emulating execution of
non-native instructions on a computing system having an
istruction processor configured to execute native instruc-
tions 1s disclosed. The system includes an instruction proces-
sor configured to execute native instructions, and a memory
communicatively connected to the mstruction processor and
configured to store computer-readable instructions. The sys-
tem further includes a bank of non-native instructions 1nca-
pable of direct execution on the istruction processor. The
system also includes a shadow memory bank having a plu-
rality of shadow memory entries, each of the shadow memory
entries corresponding to one of the non-native instructions.
The shadow memory entries are configured to store one or
more references to precompiled code fragments of native
instructions that correspond to the non-native instruction
associated with that shadow memory entry. The system also
includes a virtualized instruction processor configured to
access pointers i the shadow memory bank and direct execu-
tion of precompiled code fragments corresponding to 1nstruc-
tion codes 1n the shadow memory bank.

In a third aspect, a system for emulating execution of
non-native instructions on a computing system having an
instruction processor configured to execute native instruc-
tions 1s disclosed. The system 1includes an instruction proces-
sor configured to execute native instructions, and a memory
communicatively connected to the mnstruction processor. The
memory 1s configured to store computer-readable nstruc-
tions executable on the instruction processor that, when
executed, cause the system to perform a method of executing
non-native instructions using the istruction processor. The
method includes loading a bank of non-native instructions
into memory for execution on a processor configured to
execute native mstructions, and initializing a shadow memory
associated with the bank of non-native instructions. The
method further includes fetching a non-native instruction,
and interpreting the non-native istruction to generate an
instruction code to be stored in the shadow memory. The
method also includes selecting, based on the instruction code,
a precompiled code fragment from which to implement a
virtual machine instruction corresponding to the non-native
instruction.

In a fourth aspect, a method for dynamically turning on or
ofl just-in-time compilation in a dynamic translator using
instruction code translation includes fetching a non-native
instruction from a plurality of non-native instructions, and
interpreting the non-natrve mstruction to generate an mstruc-




US 9,201,635 B2

3

tion code. The method may also include determiming 1f the
instruction code satisfies a criteria which prohibits compila-
tion of the mstruction code, and prohibiting compilation of
the 1instruction code 1f the criteria 1s determined to be satisfied.
The method may further include implementing a virtual
machine instruction corresponding to the non-native mstruc-
tion based on the istruction code i1f the criteria 1s determined
to be satisfied.

In a fifth aspect, a computer program product may include
a non-transitory computer-readable medium comprising code
to perform the steps of fetching a non-native 1nstruction from
a plurality of non-native instructions, and interpreting the
non-native instruction to generate an instruction code. The
medium may also include code to perform the steps of deter-
mimng 1f the instruction code satisfies a criteria which pro-
hibits compilation of the instruction code, and prohibiting,
compilation of the istruction code 1t the criteria 1s deter-
mined to be satisfied. The medium may further include code
to perform the step of implementing a virtual machine
instruction corresponding to the non-native instruction based
on the mstruction code if the criteria 1s determined to be
satisfied.

In a sixth aspect, an apparatus may include a memory, and
a processor coupled to the memory. The processor may be
configured to perform the steps of fetching a non-native
istruction from a plurality of non-native instructions, and
interpreting the non-native mstruction to generate an istruc-
tion code. The processor may also be configured to perform
the steps of determining 1f the instruction code satisfies a
criteria which prohibits compilation of the instruction code,
and prohibiting compilation of the instruction code if the
criteria 1s determined to be satisfied. The processor may be
turther configured to perform the step of implementing a
virtual machine mstruction corresponding to the non-native
instruction based on the instruction code 1t the criteria 1s
determined to be satisfied.

The foregoing has outlined rather broadly the features and
technical advantages of the present disclosure 1n order that the
detailed description of the disclosure that follows may be
better understood. Additional features and advantages of the
disclosure will be described heremnafter which form the sub-
ject ofthe claims of the disclosure. It should be appreciated by
those skilled 1n the art that the conception and specific
embodiment disclosed may be readily utilized as a basis for
modifying or designming other structures for carrying out the
same purposes of the present disclosure. It should also be
realized by those skilled 1n the art that such equivalent con-
structions do not depart from the spirit and scope of the
disclosure as set forth in the appended claims. The novel
teatures which are believed to be characteristic of the disclo-
sure, both as to its organization and method of operation,
together with further objects and advantages will be better
understood from the following description when considered
in connection with the accompanying figures. It 1s to be
expressly understood, however, that each of the figures 1s
provided for the purpose of 1llustration and description only
and 1s not intended as a definition of the limits of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

For amore complete understanding of the disclosed system
and methods, reference 1s now made to the following descrip-
tions taken 1n conjunction with the accompanying drawings.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 1s a schematic view of an example computing sys-
tem 1n which dynamic translation of non-native mstructions
via mstruction codes stored in shadow memory can be imple-
mented:

FIG. 2 1s a flowchart 1illustrating an example method by
which nonnative 1nstructions can be translated for execution
in a computing system:

FIG. 3 1s a flowchart 1illustrating an example method by
which a shadow memory can be used to improve performance
in translating an executing non-native instructions 1n a coms-
puting system;

FIG. 4A 1s a logical diagram of structures used for trans-
lated execution of non-native instructions using a shadow
memory, according to an example embodiment;

FIG. 4B 1s a logical diagram 1llustrating instantiation and
initial execution of non-native mstructions using a shadow
memory, according to the embodiment 1llustrated 1n FI1G. 4A;

FIG. 4C 1s a logical diagram illustrating population of the
shadow memory during emulated execution of non-native
instructions for subsequent execution directly from the
shadow memory, according to an example embodiment; and

FIG. 4D 1s a logical diagram illustrating subsequent execu-
tion directly from shadow memory.

FIG. 5 1s a tlow chart 1llustrating the data movement when
executing non-native istructions i a computing system hav-
ing a processor configured to execute native instructions
according to one embodiment of the disclosure.

FIG. 6 1s a block diagram illustrating the internal organi-
zation of a JIT compiler according to one embodiment of the
disclosure.

FIG. 7 1s a flow chart illustrating a method for executing
non-native mstructions 1n a computing system having a pro-
cessor configured to execute native instructions according to
one embodiment of the disclosure.

FIG. 8 15 a flow chart 1llustrating a method for dynamically
turning on or oif just-in-time compilation in a dynamic trans-
lator using nstruction code translation according to one
embodiment of the disclosure.

FIG. 9 1s a flow chart illustrating a method for dedicating
processing resources to just-in-time compilers and 1nstruc-
tion processors in a dynamic translator according to one
embodiment of the disclosure.

FIG. 10 1s a flow chart illustrating a method for updating
compiled native instruction paths according to one embodi-
ment of the disclosure.

FIG. 11 1s a tlow chart i1llustrating a method for displaying
and dynamically controlling operations of a dynamic trans-
lator according to one embodiment of the disclosure.

FIG. 12 1s a tlow chart illustrating a method for defining an
instruction path to be compiled by a just-in-time compiler
according to one embodiment of the disclosure.

FIG. 13 1s a flow chart illustrating a method for implement-
ing a jump instruction 1 a dynamic translator using instruc-
tion code translation and just-in-time compilation according,
to one embodiment of the disclosure.

FIG. 14 1s a flow chart illustrating a method for implement-
ing an indirect operand instruction in a dynamic translator
using instruction code translation and just-in-time compila-
tion according to one embodiment of the disclosure.

FIG. 15 1s a flow chart illustrating a method for executing
a non-compiled instruction code during execution of a com-
piled instruction path according to one embodiment of the
disclosure.

FIG. 16 1s a flow chart illustrating a method for synchro-
nously and asynchronously operating a dynamic translator
according to one embodiment of the disclosure.



US 9,201,635 B2

S

FI1G. 17 1s a flow chart 1llustrating a method for handling an
execution interrupt 1n a dynamic translator according to one

embodiment of the disclosure.

FI1G. 18 15 a block diagram 1llustrating a computer network
according to one embodiment of the disclosure.

FIG. 19 15 a block diagram illustrating a computer system
according to one embodiment of the disclosure.

FIG. 20A 1s a block diagram 1llustrating a server hosting an
emulated software environment for virtualization according
to one embodiment of the disclosure.

FIG. 20B 1s a block diagram 1llustrating a server hosting an
emulated hardware environment according to one embodi-
ment of the disclosure.

DETAILED DESCRIPTION

Various embodiments of the present invention will be
described 1n detail with reference to the drawings. Reference
to various embodiments does not limit the scope of the mnven-
tion, which 1s limited only by the scope of the claims attached
hereto. Additionally, any examples set forth 1n this specifica-
tion are not intended to be limiting and merely set forth some
of the many possible embodiments for the claimed invention.

The logical operations of the various embodiments of the
disclosure described herein are mmplemented as: (1) a
sequence of computer implemented steps, operations, or pro-
cedures running on a programmable circuit within a com-
puter, and/or (2) a sequence of computer implemented steps,
operations, or procedures running on a programmable circuit
within a directory system, database, or compiler.

In general the present disclosure relates to methods and
systems for improved execution of non-native instructions on
a native computing system, and in particular using instruction
codes defining the non-native 1nstruction to be performed,
thereby avoiding at least a portion of the translation process
typically required in a loop-based runtime translator used in
execution of non-native instructions. By generating such
instruction codes during runtime of an instruction translation
system, overhead during subsequent execution of those same
istructions 1s greatly reduced. Because 1t 1s common to
repeat execution of particular code, such increased perior-
mance during repeated execution of the same code segment
generally can be expected to have an overall beneficial effect
on performance.

In addition to using instruction code translation, execution
ol non-native 1nstructions on a native computing system may
also be improved by using a just-in-time (JI'T) compiler oper-
ating substantially concurrently with the instruction code
translator. A dynamic translator utilizing both instruction
code translation and JI'T compilation may have the flexibility
to dynamically choose at runtime between executing the
instruction code or the compiled native mstruction, therefore
possessing additional degrees of freedom to improve the per-
formance of the dynamic translation system. For example,
when executing a particular stream ol non-native instructions
on the native computing system, the dynamic translator may
execute a combination of instruction codes and compiled
native instructions to achieve improved execution perior-
mance and speed because the translator may not be restricted
to execution of only istruction codes or only compiled native
instructions or neither.

Referring now to FIG. 1, a logical block diagram of a
computing system 100 i1s shown that can be used to execute
non-native code using a dynamic translation system. In other
words, the computing system 100 includes hardware and
soltware capable of retrieving non-native instructions (1.e.,
instructions that are not capable of native execution on a

10

15

20

25

30

35

40

45

50

55

60

65

6

particular computing system’s 1nstruction set architecture)
and translating those instructions for execution on that com-
puting system’s native instruction set architecture. In the
embodiment shown, the computing system 100 includes a
natrve instruction processor 102 communicatively connected
to a native, physical memory 104.

In the embodiments discussed herein, the processor 102 1s
generally referred to as a native instruction processor, in that
it 1s a programmable circuit configured to execute program
instructions written 1 a particular, native instruction set
architecture. In various examples, the 1nstruction set archi-
tecture corresponds to an Intel-based instruction set architec-
ture (e.g., IA32, 1A32-x64, 1A64, ctc.); however, other
instruction set architectures could be used.

The memory 104 stores computer-executable instructions
to be executed by the processor 102, which in the embodiment
shown includes a native operating system 106, native appli-
cations 108, a memory buffer 110, and an emulation system
112 hosting one or more non-native components.

The native operating system 106 1s generally an operating
system compiled to be executed using the native instruction
set archutecture of the processor 102, and 1n various embodi-
ments discussed herein, can be a commodity-type operating
system configured to execute on commodity hardware.
Examples of such an operating system 106 include UNIX,
LINUX, WINDOWS, or any other operating systems adapted
to operate on a commodity platiorm.

The native applications 108 can be, for example, any of a
variety ol applications configured to be hosted by a native
operating system 106 and executable on the processor 102
directly. Traditionally, applications 108 correspond to lower-
security or lower-reliability applications for which main-
frame systems were not traditionally employed. In such an
arrangement, memory buifer 110 can be managed by the
native operating system 106, and can store data for use in
execution of eirther the native operating system 106 or the
applications 108.

The one or more non-native components hosted by the
emulation system include a non-native operating system 114,
which 1in turn manages non-native applications 116 and a
non-native memory buifer 118. The non-native operating sys-
tem 114 can be any of a variety of operating systems compiled
for execution using an 1nstruction set architecture other than
that implemented in the processor 102, and preferably such
that the non-native operating system and other non-native
applications are incapable of natively (directly) executing on
the processor 102. Any of a variety of emulated, non-native
operating systems can be used, such that the emulated oper-
ating system 1s 1implemented using a non-native instruction
set architecture. In one possible embodiment, the emulated
operating system 1s the OS2200 operating system provided
by Unisys Corporation of Blue Bell, Pa. Other emulated
operating systems could be used as well, but generally refer to
operating systems ol mainiframe systems.

The non-native applications 116 can include, for example
mainirame applications or other applications configured for
execution on the non-native architecture corresponding to the
non-native operating system 114. The non-native applica-
tions 116 and non-native operating system 114 are generally
translated by the emulation system for execution using the
native 1nstruction processor 102. In addition, non-native
memory buifer 118 allows for management of data in the
non-native applications by the non-native operating system,
and 1s an area in memory 104 allocated to a partition including
the non-native operating system. The non-native memory
buifer 118 generally stores banks of instructions to be
executed, loaded on a bank-by-bank basis. One example 1llus-




US 9,201,635 B2

7

trating this bank memory management process in the context
of a dynamic translation system 1s discussed 1n U.S. Patent
Publication No. 2010/0125554, entitled “Memory Recovery
Across Reboots of an Emulated Operating System.” filed on
Nov. 18, 2008, the disclosure of which i1s hereby incorporated 53
by reference 1n 1ts entirety.

The emulation system 112 can be implemented, in some
embodiments, as an executable program to be hosted by a
native operating system. In an example embodiment, the
emulation system 1s configured as an executable hosted by a 10
Linux operating system dedicated to one processor 102
implementing an Intel instruction set. The emulator also com-
municates to Linux for Input/output. Memory Management,
and clock management services. In some embodiments, this
emulation system 112 can be maintained on the computing 15
system elfectively as microcode, providing translation ser-
vices for execution of the non-native 1nstructions.

The emulation system 112 further includes an 1nstruction
processor emulator 120 and a control services component
122. The instruction processor emulator 120 generally 20
appears to the non-native operating system 114 as an mstruc-
tion processor configured to execute using the non-native
instruction set architecture. The nstruction processor emula-
tor 120 1s generally implemented 1n software, and 1s config-
ured to provide a conduit between the non-native operating 25
system 114 and non-native applications 116 and the native
computing system formed by the nstruction processor 102
and native operating system 106. In other words, the instruc-
tion processor emulator 120 determines which native instruc-
tions to be executed that correspond to the non-native instruc- 30
tions fetched from the instruction bank loaded. For instance,
the emulator may include an interpretive emulation system
that employs an interpreter to decode each legacy computer
instruction, or groups of legacy instructions.

After one or more instructions are decoded 1n this manner, 35
a call 1s made to one or more routines that are written 1n
“native mode” instructions that are included 1n the instruction
set of instruction processor 102. Such routines emulate each
of the operations that would have been performed by the
legacy system, and are collected into native code snippets that 40
can be used 1n various combinations to implement native
versions ol the non-native instructions. Another emulation
approach utilizes a compiler to analyze the object code of
non-native operating system 114 and thereby convert this
code from the legacy instructions into a set of native mode 45
instructions that execute directly on processor 102, rather
than using precompiled native code snippets. After this con-
version 1s completed, the non-native operating system 114
then executes directly on the processor 102 without any run-
time aid of emulator 120. These, and/or other types of emu- 50
lation techniques may be used by emulator 120 to emulate
non-native operating system 114 1n an embodiment wherein
that operating system 1s written using an nstruction set other
than that which 1s native to processor 102.

Taken together, instruction processor emulator 120 and 55
control services 122 provide the interface between the native
operating system 106 and non-native operating system 114.
For instance, when non-native operating system 114 makes a
call for memory allocation, that call 1s made via instruction
processor emulator 120 to control services 122. Control ser- 60
vices 122 translates the request into the format required by an
API 124. Native operating system 106 receives the request
and allocates the memory. An address to the memory 1is
returned to control services 122, which then forwards the
address, and 1n some cases, status, back to non-native oper- 65
ating system 114 via instruction processor emulator 120. In
one embodiment, the returned address 1s a C pointer (a pointer

8

in the C language) that points to a buifer in virtual address
space. Additional details regarding execution of instructions
using an emulation system such as system 112 are illustrated
below.

Referring to FIG. 2, an example method 200 for execution
ol non-native istructions in the computing system 100 of
FIG. 1 1s shown. The method 200 1s generally performed by
the emulation system 112 of FIG. 1, and in particular in
cooperation with non-native operating system 114. FIG. 2
specifically illustrates an example of emulated operation of
non-native instructions in a manner which requires re-trans-
lation of each non-native instruction by the emulation system

112 during operation.
As 1llustrated 1n FIG. 2, the method 200 includes loading a

bank of nonnative 1nstructions for execution using the emu-
lation system 112 (step 202). This can include, for example,
fetching an active instruction bank, as indicated by the non-
native operating system 114, and storing that relevant active
instruction bank in memory buffer 118 for use by the emula-
tion system 112.

The emulation system 112 will next fetch a non-native
instruction from the memory builer 118 (step 204) and
execute that imstruction (step 206) by translating the non-
native instruction to one or more native mnstructions. This
translation process can include, for example, inspecting the
non-native instruction to determine the type of instruction to
be performed, as well as the 1dentified registers, memory, or
other storage location. This information 1s then translated to
the memory resources on the native computing system for
example by selecting a precompiled set of native instructions
that execute the corresponding non-native instruction, as well
as by selecting associated memory resources to be used to
store the resulting data (e.g., back into memory buifer 118).

Instruction translation between non-native instructions and
natrve istructions largely depends upon the particular non-
native and native instruction set architectures implemented.
In one example embodiment where the non-native instruction
set architecture corresponds to an OS2200 architecture and
the native architecture corresponds to an Intel instruction set
architecture, instructions in a 36-bit word format are parsed
on a bit-by-bit basis by the emulation system, and function
codes (e.g., opcodes), extended function codes, register oper-
and addresses, index designators, and other features known as
published 1n the OS2200 instruction set can be parsed for
determination of corresponding functionality in the Intel
instruction set.

Generally, an emulator stop assessment operation deter-
mines whether the emulation system 112 1s to be stopped
(step 208). If the emulation system 1s to remain 1n operation,
it continues by looping back to step 204 to fetch and execute
a next subsequent non-native instruction on the native com-
puting system. Otherwise, the emulation system exits (step
210).

In general, and as noted above, each time a non-native
instruction 1s fetched and executed in the arrangement 1llus-
trated 1n FIG. 2, that non-native mstruction must be parsed to
determine the specific native instructions to be performed. To
avold the overhead of parsing each non-native instruction 1n
the present disclosure an alternative process 1s 1llustrated in
FIGS. 3 and 4A-4D 1n which 1nstruction codes defining the
operations to be performed 1n emulating each non-native
instruction are saved in a shadow memory for subsequent
execution. Although 1n an 1nitial pass, this parsing and analy-
sis of each non-native 1nstruction 1s not avoided, in subse-
quent executions of the same instructions, overhead 1is
reduced, thereby increasing performance.




US 9,201,635 B2

9

Referring specifically to FIG. 3, a method 300 1s shown 1n
which execution of non-native mstructions is provided. The
method 300 represents an enhancement on the general loop
operation 1illustrated in FIG. 2, 1n that a separate memory,
referred to herein as a shadow memory, can be used to store
pointers to native code used to emulate operation of the cor-

responding non-native instruction.

In the embodiment shown, the method 300 includes load-
ing a bank of non-native instructions for execution using the
emulation system 112 (step 302). This can include, for
example, fetching an active instruction bank, as indicated by
the nonnative operating system 114, and storing that relevant
active mstruction bank in memory bufler 118 for use by the
emulation system 112. In an example arrangement 400 of
memory structures shown in FIG. 4A, an instruction bank 402
1s shown, including a plurality of non-native instructions
(seen as non-native mstructions 1-N).

The emulation system 112 will next determine if a corre-
sponding shadow memory has been imitialized for use in
connection with the loaded 1nstruction bank (step 304). If no
shadow memory has been 1nitialized, the shadow memory 1s
created and 1mitialized (step 306). The shadow memory can
take any of a variety of forms. In general, and as 1llustrated in
FIG. 4A, a shadow memory 404 1s shown which includes a
plurality of entries, each of which directly corresponds to one
of the nonnative 1nstructions of the instruction bank 402.

In the embodiment shown, each of the entries shadow
memory 404 includes a plurality of storage locations capable
of storing pointers to locations 1n native memory that contain
precompiled code snippets (collectively 1llustrated as native
code 406) with native instructions that are emulated to
execute the corresponding non-native mstruction. These stor-
age locations can correspond to data words configured to
store pointers to those precompiled code snippets. It 1s noted
that, as 1llustrated in FIG. 4A, the storage locations 1n the
shadow memory 404 are initialized with values that indicate
no correspondence to native code, such as by storing a null
pointer, or other invalid pointer location.

In the embodiment shown, after the shadow memory has
been initialized, or has been determined to be previously
initialized, one or more 1nstruction codes are retrieved {from
the shadow memory 404 (step 308). The retrieval of 1nstruc-
tion codes 1s performed by the emulation system 112, and in
particular the mstruction emulator 120, using a wvirtual
istruction register that acts as an instruction pointer to the
non-native bank of instructions and associated shadow
memory. Any of a variety of addressing modes can be used. In
the example embodiment shown, the instruction codes in the
shadow memory 404 are arranged for one-to-one correspon-
dence with the instructions 1n the retrieved bank 402, such
that each entry in the shadow memory 404 (including up to
four pointer locations) corresponds to a particular non-native
istruction.

The retrieved 1nstruction codes are assessed (step 310) to
determine whether the mstruction codes represent valid
pointers to precompiled code snippets 1n the native code 406.
If the instruction codes are not valid (e.g., assuming recent
initialization and storage of null pointers, or other pointers
indicating that the shadow memory 1s not populated with
valid values), the emulation system 112 will then retrieve the
corresponding non-native instruction from the loaded
memory bank 402 (step 312). The emulation system 112 will
interpret the non-native instruction, for example by parsing
the instruction to determine the operation to be performed
based on that instruction, as well as the memory storage
locations to be used (step 314). This interpreted execution of

10

15

20

25

30

35

40

45

50

55

60

65

10

a non-natirve mstruction corresponds to the traditional execus-
tion of a non-native instruction as illustrated 1n FIG. 2 (step
206).

Alongside interpreted execution of a particular non-native
instruction by the emulation system 112, that emulation sys-
tem will also determine one or more 1nstruction codes that
define the non-native instruction (step 316). Instruction
codes, which can include both primary and secondary mnstruc-
tion codes, are generated on the first execution of the non-
native mstruction by executing that instruction 1n an 1interpre-
tive mode of the emulator (e.g., as illustrated 1n FIG. 2, and
examining changes to the dynamic state of the instruction
processor (€.g., to determine changes to state of registers, and
resources used). The generated instruction code produces
equivalent state transitions to those detected in the dynamic
state of the instruction processor during interpreted execu-
tion. This can include changes to istruction code, designator
registers, and register configurations.

The mstruction codes used in the shadow memory 404 can
describe differing types of information, 1n various embodi-
ments. For example, a primary instruction code can corre-
spond to the function code of the non-native istruction (e.g.,
tetch, jump, store, etc.), while secondary istruction codes
can be used to modily those primary instruction codes, to
provide special iterations o those non-native instructions that
can be performed using a small additional native code snippet
from native code 406. For example, a store instruction, and an
add/store 1nstruction, may have the same primary 1nstruction
code, but the add/store 1nstruction may include an additional
secondary istruction code designed to provide that addi-
tional functionality. In addition, the shadow memory can be
used to store other attributes of the non-native instruction,
such as mformation about registers or memory pointers to
locations where source data can be located or result data 1s to
be stored.

Because the emulation system 112 1s required to parse each
non-native mstruction during traditional emulated execution,
the result of this process 1s captured, and a correspondence 1s
determined between the non-native mstruction and precoms-
piled code snippets available to the emulation system. As
shown 1n FIG. 4C, pointers to the precompiled code snippets
are stored 1n the pointer storage locations in the particular
shadow memory entry associated with the non-native instruc-
tion.

If execution of the bank of instructions using the emulation
system 112 1s to continue, operational flow returns to step
304, for operation based on the next nonnative mstruction to
be executed. However, 1f execution of the bank of instructions
1s terminated, the mstruction processor 1s halted (step 320).

It 1s noted that, during subsequent passes through the
method 300, if an instruction 1s determined to not require
interpretation (since a valid instruction code entry exists 1n
the shadow memory 404), from step 310, operational flow
proceeds to an operation in which the emulation system
executes directly from the shadow memory. In such circum-
stances, the shadow memory already contains a pre-translated
set of one or more pointers to native code that provide analo-
gous functionality to the non-native instruction. In particular,
the Instruction Codes in shadow memory are used to select
precompiled code fragments which implement the virtual
machine mstructions.

As 1llustrated 1 FIG. 4D (llustrating a fully populated
shadow memory), during second and subsequent passes
through instructions in an instruction bank, execution can
occur directly from the shadow memory 404, rather than from
the bank of non-native instructions 402. For example, the
non-native code can be executed by stepping through shadow




US 9,201,635 B2

11

memory 404 and branching to each code fragment in the
native code 406. In this way, translation processes can be
avolded, and execution can simply be accomplished by step-
ping through a listing of pointers to native code snippets 406
that, when executed 1n a particular order defined 1n shadow
memory, perform analogous operations to the code in the
loaded bank of mstructions 402.

It 1s noted that, once a shadow memory 404 1s populated,
there may be one or more circumstances in which that shadow
memory can be invalidated, such that subsequent execution
must re-create the shadow memory. These circumstances can
include, for example, cases 1n which non-native code 1s con-
figured to overwrite the non-native instructions in the bank
402, or where an incorrect address register assignment 1s
detected, or 1n the event of an I/O write to the bank of memory
1s detected. Since the emulation system 112 and non-native
operating system 114 manage data storage and access to
non-native memory and non-native applications, a flag can be
set 1 one or both systems to indicate the occurrence of an
event that would 1nvalidate a populated shadow memory.

FIG. 5 1s a flow chart illustrating the movement of data
when executing non-native instructions 1n a computing sys-
tem having a processor configured to execute native mstruc-
tions according to one embodiment of the disclosure. The
data movement illustrated 1n FIG. 5 may correspond to the
movement of data 1n a dynamic translator that utilizes both
instruction code translation and JIT compilation to execute
instructions 1n a computing system. At block 502, a plurality
of non-native instructions may be stored in non-native
memory, such as non-native memory 118. The plurality of
non-native mstructions stored in the non-native memory may
include a non-native mnstruction stream containing the non-
native instructions that may be executed with a processor
configured to execute native instructions, such as native pro-
cessor 102.

At block 504, non-native instructions from non-native
memory may be fetched and interpreted to generate mnstruc-
tion codes. According to one embodiment, the instruction
code generator at block 504 may include an interpreter sys-
tem, such as emulation system 112, that translates a non-
native imstruction to one or more nstruction codes that define
the operations performed by the non-native instruction in a
format that can be understood by the native processor.

At block 506, the instruction codes generated by the
instruction code generator may be stored in shadow memory,
such as shadow memory 404. In one embodiment, the instruc-
tion codes 1n the shadow memory may be optimized, such as
at block 508, prior to being executed by an execution engine
at block 512, such as the native processor 102. In some
embodiments, the instruction code optimization performed at
block 508 may modily an instruction code or a block of
instruction codes to more efficiently execute the instruction
codes with the execution engine, to execute the instruction
codes more rapidly, to execute the instruction codes with less
resources, and/or the like.

In some embodiments, at block 510, instruction codes
located 1n shadow memory may be processed with a JIT
compiler to generate compiled native instructions. For
example, 1n one embodiment, an 1nstruction code 1n shadow
memory may be compiled with the JIT compiler to generate
a native mstruction that can be directly executed by an execu-
tion engine. In another embodiment, the dynamic translator
may include functionality to restrict the compilation, by the
II'T compiler, of an 1nstruction considered complex or 1nfre-
quent, or an mstruction necessary for proper operation of the
translator itself. Examples of instructions for operation of the
translator itself may, 1n some embodiments, include nstruc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions used to trigger high level JI'T compiler behavior, such as
path starts or ends or actions for which the JIT compiler may
not have sullicient data structures to handle. Based on the
configuration of the dynamic translator, the execution engine
may execute, at block 512, the native code fragments pointed
to by the instruction codes or the execution engine may
execute the compiled native instructions generated by the JIT
compiler.

FIG. 6 1s a block diagram 1illustrating the internal organi-
zation of a JIT compiler according to one embodiment of the
disclosure. In FIG. 6, the boxes with round corners may
represent data structures, while the boxes with the square
corners may represent logical components that constitute the
compilation passes that operate on the data structures. The
arrows may also show input data into the passes and output
data from the passes. At block 604, a copy of the instruction
codes at block 602 may be captured, and each potential
instruction code 1n an 1mstruction code path may be examined
to determine whether the potential instruction code can be
compiled and how 1t contributes to the control flow. Further-
more, at block 604, a basic block and edge data structure
organization of the instruction codes that constitute the 1nitial
control flow graph (CFB) representation of the path may be
built, thereby creating, at block 606, the basic block and edge
data structure orgamization of the instruction codes.

In some embodiments, instruction-specific optimization
passes may be executed at block 608, exploiting the CFB
information, and potentially moditying the CFG 1n the pro-
cess, which may correspond to the updated basic blocks and
edges at block 610. At block 612, a compiler intermediate
representation for an instruction may be created by convert-
ing the instruction code representation for the mstruction to a
compiler intermediate representation for the instruction,
which may, 1n some embodiments, generate a large number of
compiler basic blocks and edges, such as the compiler basic
blocks and edges at block 614. At block 616, the JIT compiler
may optimize instruction codes for JI'T compiler compilation
and/or the JI'T compiler may compile the mnstruction codes to
generate native mstructions corresponding to the instruction
codes, such as the native instructions at block 618. In some
embodiments, the JIT compiler may directly incorporate a
source code component of the translator. For example, the JI'T
compiler may directly incorporate a header file that defines a
simulated non-native machine state, such as general registers,
base registers, mstruction code structure, and/or the like.

Returning to FIG. 5, an mstruction may be executed dif-
terently between a first time and a subsequent time. For
example, 1n some embodiments, aifter an instruction 1is
executed with the execution engine at block 512, the flow of
a dynamic translator may follow path 514 to execute a sub-
sequent istruction. If the mstruction 1n line for execution has
not been previously fetched and interpreted at block 504, then
flow may proceed via path 516 to the instruction code gen-
erator at block 504 to fetch the instruction 1n line for execution
from the non-native memory and interpret the fetched non-
native instruction to generate one or more nstruction codes
corresponding to the fetched non-native instruction. The gen-
erated 1nstruction code may then be stored in the shadow
memory 306. Once in the shadow memory 506, the nstruc-
tion code may be optimized and executed in the execution
engine 512. According to another embodiment, the mstruc-
tion code may be compiled at block 510 with the JIT compiler
to generate a native instruction corresponding to the non-
native instruction in line for execution, and the generated
natrve 1mstruction may be executed to implement the virtual
machine mstruction corresponding to the non-native mstruc-
tion. In other embodiments, both the instruction code and the




US 9,201,635 B2

13

generated native instruction may be available to the execution
engine at block 512, where the dynamic translator makes a
decision as to whether execute the instruction code or the JIT
compiler-generated native instruction.

In another embodiment, i1t the 1nstruction 1n line for execu-
tion was previously fetched and interpreted at block 504, then
flow from path 514 may proceed via path 518 to the shadow
memory 306 to locate the mstruction code corresponding to
the non-native istruction in line for execution. In some
embodiments, because the instruction code has already been
previously generated, the JIT compiler-generated native
instruction generated by compiling the instruction code may
also already be available in the native memory. As belore,
both the optimized instruction code corresponding to the
non-native instruction in line for execution and/or the JIT
compiler-generated native instruction corresponding to the
non-native instruction in line for execution may be made
available to be executed within the execution engine at block
512, where logic may be employed by the dynamic translator
to determine whether to execute then 1nstruction code or the
IIT compiler-generated native imstruction. As evident from
the 1llustration provided 1n FIG. 5, any subsequent execution
of anon-native mnstruction may be performed without refetch-
ing and reinterpretation because the instruction already exists
in the shadow memory, which may improve the speed at
which a dynamic translator executes instructions because
fetching and interpreting non-native instructions are time-
consuming tasks.

The details regarding the movement of data illustrated in
FIG. 5 may also be understood with the method illustrated 1n
FIG. 7, which 1s a flow chart 1llustrating a method for execut-
ing non-native mstructions i a computing system having a
processor configured to execute native instructions according,
to one embodiment of the disclosure. A method 700 begins at
block 702 with fetching a first non-native mstruction from a
plurality of non-native instructions. At block 704, the first
non-native mstruction 1s interpreted to generate a first instruc-
tion code, and at block 706 the first instruction code 1s com-
piled to generate a first native instruction corresponding to the
first non-native 1instruction. According to an embodiment,
actions performed at blocks 702 and 704 may correspond to
the actions performed by the instruction code generator at
block 504 of FIG. 5, while actions performed at block 706
may correspond to actions performed by the JI'T compiler at
block 510. In some embodiments, the JIT compiler may
retrieve the mstruction codes from the shadow memory in
order to compile the mstruction codes.

At block 708, 1t 1s determined whether to execute the first
instruction code or the generated first native mstruction. For
example, 1n some embodiments, block 708 may include
determining 1f user input has been recerved specifying that
instruction codes should be executed or that compiled native
instructions should be executed.

In another example, block 708 may include determining 11
the JIT compiler has communication capability with the
native memory. I, for example, the JIT compiler has com-
munication capability to the native memory and the JIT com-
piler 1s not prohibited from storing native instructions in the
natrve memory, then 1t may be determined that the first native
instruction should be executed. However, i1 the JIT compiler
has 1ts communication capability to the native memory dis-
abled or 11 the JI'T compiler 1s prohibited from storing native
instructions in the native memory, then the first instruction
code may be executed.

In yet another example, determining whether to execute the
first instruction code or the generated native instruction may
include determining that configuration parameters associated

10

15

20

25

30

35

40

45

50

55

60

65

14

with the dynamic translator indicate that the instruction code
should be executed or determining that configuration param-
cters associated with the dynamic translator indicate that the
native instruction should be executed. In other examples,
hardware or software logic may be programmed 1n various
ways to determine whether to execute the {first mstruction
code or the first native code. For example, the hardware and
soltware logic may be programmed based on parameters
associated with the dynamic translator, such as user 1nputs,
type of mstruction to be executed, location of instruction in
memory, and the like.

Method 700 may further includes, at block 710, imple-
menting a first virtual machine mstruction corresponding to
the first non-native instruction. In one embodiment, the
actions performed at block 710 may correspond to actions
performed by the execution engine at block 512 of FIG. 5. The
implementing of a first virtual machine 1nstruction may be
based on the determination of whether to execute the first
instruction code or the first native mstruction. For example, 1f
a determination 1s made to execute the first native instruction,
then the branch address pointed to by the first instruction code
may be replaced with the address of the first native mstruc-
tion. The first native instruction may then be located by locat-
ing the address of the first native instruction in native memory.
Upon being located, the first native instruction may be
executed. However, 1f a determination 1s made to execute the
first instruction code, then the native code fragment pointed to
by the first instruction code may be located in the native
memory and subsequently executed upon being located.

According to one embodiment, the dynamic translator may
function may improve performance and speed by changing
subsequent execution calls, such as by not requiring reinter-
pretation of a non-native mstruction scheduled to be executed
if the non-native mstruction was previously interpreted. For
example, the dynamic translator may access the shadow
memory to determine 1f a second instruction code associated
with a second non-native mstruction scheduled to be executed
1s located 1n the shadow memory. If the second instruction
code 1s located 1n the shadow memory then the second
instruction code may be fetched. The dynamic translator
operating on the instruction processor may then determine
whether to execute the second instruction code or a second
native istruction corresponding to the second non-native
instruction, where the second native instruction was gener-
ated by previously compiling the second instruction code
during a previous execution call for the second non-native
instruction. Based on the determination of whether to execute
the second 1nstruction code or the second native 1instruction, a
second virtual machine 1nstruction corresponding to the sec-
ond non-native 1mstruction may be implemented.

Improvements 1n speed and performance may be achieved
when the second non-native mstruction 1n line for execution
was previously fetched for execution, because then 1nterpre-
tation of the second non-native istruction may not be neces-
sary to execute the second non-native mstruction. For
example, 11 the second non-native instruction corresponds to
the first non-native instruction, then the second instruction
code, which may be the first instruction code called a second
time, may be 1n the shadow memory and quickly fetched for
execution without the need to interpret the second non-native
instruction, which would amount to reinterpreting the first
non-native 1nstruction. Furthermore, because the second
instruction code may have already been compiled, such as
when the first instruction code was fetched for execution and
compiled, there may be no need to recompile the second
instruction code to generate the second native instruction
because the second native instruction may already be avail-



US 9,201,635 B2

15

able 1n the native memory, where 1t may be located at the
address of the first native instruction. Therefore, 1f the second
native mstruction 1s executed to implement the second virtual
machine istruction corresponding to the second non-native
instruction, then two time consuming operations may have
been skipped, such as the interpretation and compiling opera-
tions. That 1s, the implementation of the second wvirtual
machine instruction may correspond to implementing the first
virtual machine instruction a second time, except that the
instruction code and native istruction may already be readily
available. As a result, accessing the shadow memory to fetch
the first instruction code 1n order to implement the first virtual
machine 1nstruction corresponding to the first non-native
istruction a second time avoids reinterpreting the first non-
native instruction to implement the first virtual machine
instruction a second time.

According to another embodiment, 11 the second instruc-
tion code 1s not located in the shadow memory, then the
second non-native mstruction 1n line for execution may be
fetched from the plurality of non-native instructions. The
second non-native istruction may then be interpreted to gen-
erate the second instruction code, and the second 1nstruction
code may be compiled to generate the second native mstruc-
tion corresponding to the second non-native mstruction. The
dynamic translator operating on the instruction processor
may then determine whether to execute the second instruction
code or a second native mstruction corresponding to the sec-
ond non-native instruction. Based on the determination of
whether to execute the second 1nstruction code or the second
native instruction, a second virtual machine 1nstruction cor-
responding to the second non-native instruction may be
implemented.

In allowing a dynamic translator to choose between execut-
ing 1nstruction codes and compiled native 1structions corre-
sponding to the instruction codes, the dynamic translator may
merge the JIT compiler into the execution environment in a
manner that makes the presence of the JIT compiler 1n the
system transparent. For example, the dynamic translator may
execute numerous instruction codes to perform the operations
involved 1n the corresponding non-native mstructions, while
at the same time, a JIT compiler runming in parallel to the
instruction code translator 1s converting sequences or series
ol 1nstruction codes 1nto native instructions. As execution of
the 1instruction codes continues, when 1t 1s determined that a
ITT compiled native instruction or group of native instructions
should be executed, the JIT compiler simply replaces the
address pointed to by the instruction code so that 1t points to
the compiled native mnstruction. Therefore, even though an
instruction processor may think it 1s executing instruction
codes, it may be processing a JIT compiled native instruction
Or an entire series or group of native 1structions.

The merging of the istruction code translator and JIT
compiler as described above makes the execution of mstruc-
tion codes and JI'T compiled native instructions a smoother
process. For example, rather than requiring that the dynamic
translator choose before runtime whether to run 1n either
interpreter mode, 1n which instruction codes are executed, or
in JIT compiler mode, in which JIT compiled native instruc-
tions are executed, the dynamic translator may run both of
them 1n parallel and choose at runtime whether execute an
instruction code or a JI'T compiled native mstruction. In addi-
tion, because the 1instruction code translator and the JIT com-
piler run 1n an almost parallel fashion, the compilation with
the JIT compiler of instruction codes may be completely
halted or prohibited without halting the execution of mnstruc-
tions because the instruction codes are still capable of being,
executed.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 8 1s a flow chart illustrating a method for dynamically
turning on or oif just-in-time compilation 1n a dynamic trans-
lator using instruction code translation according to one
embodiment of the disclosure. A method 800 begins at block
802 with fetching a non-native instruction from a plurality of
non-native instructions, and, at block 804, interpreting the
non-native 1nstruction to generate an 1nstruction code.
Method 800 may then proceed to block 806 to include deter-
mining 1f the instruction code satisfies a criteria which pro-
hibits compilation of the 1nstruction code.

The criteria may include a type of istruction, and deter-
mining 1i the criteria 1s satisfied may include determiming 1t
the 1nstruction code 1s associated with the specified type of
instruction. As an example, the type of mnstruction may be a
load instruction or an instruction to add a media. In some
embodiments, the type of instruction used for the criteria may
be selected based on the customer using the system that
utilizes the dynamic translator. Other types of instructions
may also be used as the criteria. The criteria may also include
a range ol addresses 1n at least one of a shadow memory
associated with the plurality of non-native instructions and a
non-native memory, and determimng if the criteria 1s satistied
may include at least one of determining 11 the instruction code
1s located within the range of addresses in the shadow
memory and determining 1f the non-native instruction 1s
located within the non-native memory.

I the criteria 1s determined to be satisfied, then, at block
808, compilation of the instruction code may be prohibited,
and, at block 810, a virtual machine instruction correspond-
ing to the non-native instruction may be implemented based
on the 1nstruction code.

The determination made at block 806 may indicate that the
criteria that prohibits compilation of the instruction code 1s
not satisiied. In those embodiments where the criteria is deter-
mined to not be satisfied, the instruction code may be com-
piled to generate a native instruction corresponding to the
non-native mstruction and a virtual machine instruction cor-
responding to the non-native instruction may be implemented
based on the generated native 1nstruction.

User input may also be used to determine whether to allow
or prohibit compilation of the instruction code. For example,
if user input specifies that compilation of the instruction code
1s prohibited, then the dynamic translator may prohibit com-
pilation of the mstruction code based on the mput. If, on the
other hand, user mput specifies that compilation of the
instruction code 1s allowed, then the dynamic translator may
allow compilation of the 1struction code based on the input.

FIG. 9 15 a flow chart illustrating a method for dedicating
processing resources to just-in-time (JIT) compilers and
instruction processors 1n a dynamic translator according to
one embodiment of the disclosure. A method 900 may begin
at block 902 with identifying a plurality of processing
resources available for a dynamic translator. At block 904, a
first processing core of the plurality of processing resources
may be dedicated to a JIT compiler associated with the
dynamic translator, and at block 906 a second processing core
of the plurality of processing resources may be dedicated to
an 1nstruction processor (IP) associated with the dynamic
translator. In some embodiments, the first processing core
may be dedicated to the JI'T compiler before the second pro-
cessing core 1s dedicated to the IP to increase the likelihood
that the JI'T compiler 1s ready when the IP starting executing,
instructions. In other embodiments, the IP may have 1ts pro-
cessing core dedicated first or at substantially the same time
as when the JI'T compiler recerves a processing dedicated
core. The processing cores dedicated to the IP and the JIT
compiler may be turned on or off dynamaically.




US 9,201,635 B2

17

Non-native instructions may be interpreted with the IP’s
dedicated processing core to generate instruction codes.
These nstruction codes may be compiled with the JIT com-
piler’s dedicated processing core to generate native 1nstruc-
tions. In some embodiments, dedicating processing cores to
particular functions, such as an IP or a JIT compiler, may
prohibit the dedicated cores from being interrupted by func-
tions other than those to which they were dedicated. For
example, switching overhead may not be allowed to be placed
on a processing core dedicated to a JIT compiler. As another
example, a processing core dedicated to the IP may be pro-
hibited from handling I/O operations or completions, and the
I/O operations and completions may be required to be
handled on other cores. In addition, dedicating a first process-
ing core to the JIT compiler and dedicating a second process-
ing core to the IP may prohibit the operations associated with
the JIT and the operations associated with the IP from inter-
tering with each other.

With separate processing cores dedicated to an IP and a JIT
compiler, the compiling of instruction codes may be per-
tormed 1n parallel with the interpreting of non-native mstruc-
tions and a dynamic translator executing instructions may
then determine whether to execute an struction code gen-
erated with the IP’s dedicated processing core or a native
istruction generated with the JIT s dedicated processing
core. Based on the determination of whether to execute the
istruction code or the native instruction, a virtual machine
instruction corresponding to a non-native instruction may be
implemented.

FIG. 10 1s a flow chart 1llustrating a method for updating
compiled native instruction paths according to one embodi-
ment of the disclosure. A method 1000 may begin at block
1002 with interpreting a non-native instruction to generate an
mstruction code. Then, at block 1004, the instruction code
may be compiled to generate a native instruction correspond-
ing to the non-native mstruction. At block 1006, method 1000
may include detecting a modification to the instruction code.
The modification may be detected by determining 1f a valid
bit associated with the instruction code indicates that the
instruction code 1s invalid. The method 1000 may further
include, at block 1008, invalidating a native code fragment
associated with the istruction code upon detecting the modi-
fication to the instruction code. The native code fragment
associated with the instruction code that gets invalidated may
also 1include any native 1nstruction or native mstruction path
generated by compiling the modified mstruction code or a
group of mnstruction codes that includes the modified mstruc-
tion code.

Atblock 1010, the method 1000 includes reinterpreting the
non-native instruction to regenerate the instruction code,
thereby generating an updated 1nstruction code. Reinterpret-
ing the non-native instruction may be performed after invali-
dating the native code fragment as shown 1 FIG. 10. How-
ever, reinterpreting the non-native instruction may
alternatively be performed before or at substantially the same
time as invalidating the native code fragment.

A method for updating compiled native mstruction paths
may also iclude replacing a branch address pointed to by the
modified instruction code. Replacing the branch address
pointed to by the modified instruction code may, upon iden-
tifying that the modified 1nstruction code 1s scheduled to be
subsequently executed, cause reinterpretation of the non-na-
tive instruction 1n order to regenerate the instruction code.
Reinterpretation and regeneration may occur prior to subse-
quently executing the mstruction code.

According to one embodiment, a method for updating
compiled native instruction paths may also include determin-

10

15

20

25

30

35

40

45

50

55

60

65

18

ing 1f an instruction code has been regenerated and recompil-
ing the updated instruction code to generate an updated native
instruction corresponding to the non-native instruction 11 1t 1s
determined that the instruction code has been regenerated.
According to another embodiment, a method for updating
compiled native istruction paths may include determining 1f
the mstruction code for which a modification was detected 1s
part of a block of mstruction codes compiled as a group to
create a native instruction path associated with the block of
instruction codes and recompiling the block of instruction
codes as a group using the updated instruction code 1t it 1s
determined that the instruction code for which a modification
was detected 1s 1n the block of instruction codes. In one
embodiment, determining 1f the instruction code for which a
modification was detected 1s part of a block of instruction
codes compiled as a group may include analyzing a quick
lockup map that includes addresses of compiled instruction
codes compiled by a just-in-time compiler to 1dentily native
instruction paths that are associated with blocks of instruction
codes that include the 1nstruction code for which a modifica-
tion was detected.

FIG. 11 1s a tlow chart i1llustrating a method for displaying
and dynamically controlling operations of a dynamic trans-
lator according to one embodiment of the disclosure. A
method 1100 may begin at block 1102 with monitoring opera-
tions of a dynamic translator, wherein the dynamic translator
uses instruction code translation in parallel with JIT compi-
lation. In some embodiments, the monitored operations may
include at least one of system properties and memory usage.
In other embodiments, the monitored operations may include
at least one of a number of compilations completed, anumber
of instructions invalidated, and a number of instructions
executed. The number of instructions executed may include at
least one of the total number of instructions executed and the
number of 1nstructions generated by a JI'T compiler that are
executed.

At block 1104, the monitored operations may be displayed
at a user interface. In one embodiment, displaying the moni-
tored operations may 1nclude displaying graphical represen-
tations of the monitored operations. At block 1106, input may
be received at the user interface, where the recetved input may
specily control parameters that set the operation of the
dynamic translator. The control parameters may include at
least one of execution mode, production mode, compilation
mode, execution enabled, and authorization level. At block
1108, the operation of the dynamic translator may be set
based on the recerved input. Although not shown, the method
1100 may also include processing the input received at the
user mterface, such as at block 1106, with a processing core
separate from any processing core executing a JIT compiler
or an IP.

FIG. 12 1s a flow chart illustrating a method for defining an
instruction path to be compiled by a JIT compiler according to
one embodiment of the disclosure. A method 1200 may begin
at block 1202 with interpreting a first non-native 1nstruction
to generate a first instruction code. At block 1204, a plurality
ol 1nstruction codes reachable by the first instruction code
may be identified. The plurality of instruction codes may
include one or more nstruction codes. The method 1200 may
include, at block 1206, assigning to a first group of instruction
codes the first istruction code and the 1dentified plurality of
instruction codes. At block 1208, the first group of instruction
codes may be compiled to generate a native instruction path.

According to another embodiment, a method for defining
an mstruction path to be compiled by a JI'T compiler may also
include 1dentitying a second instruction code from the plu-
rality of instruction codes that satisfies a criteria for terminat-




US 9,201,635 B2

19

ing an 1instruction code path. In some embodiments, no
instruction code 1n the plurality of instruction codes branched
to after the second instruction code may be assigned to the
first group of mstructions. With the second instruction code
serving as the path terminating instruction code, the gener-
ated native mstruction path may start with a native instruction
corresponding to the first instruction code and may end with
a native instruction corresponding to the second instruction
code.

In some embodiments, the criteria for terminating an
istruction code path may include at least one of a state
transition, an instruction code that generates an interrupt, and
a complex instruction. In some embodiments, at block 510,
istruction codes located in shadow memory may be pro-
cessed with a JIT compiler to generate compiled native
instructions. For example, in one embodiment, an 1nstruction
code 1 shadow memory may be compiled with the JIT com-
piler to generate a native instruction that can be directly
executed by an execution engine. In another embodiment, the
dynamic translator may include functionality to restrict the
compilation, by the JI'T compiler, of an instruction considered
complex or infrequent, or an 1instruction necessary for proper
operation of the translator itself. A complex instruction may
include, for example, any operation with multiple storage
operands or 1s otherwise not a simple data movement or
simple calculation. Examples of instructions for operation of
the translator itself may, in some embodiments, include
instructions used to trigger high level JI'T compiler behavior,
such as path starts or ends or actions for which the JIT com-
piler may not have suificient data structures to handle. Based
on the configuration of the dynamic translator, the execution
engine may execute, at block 512, the native code fragments
pointed to by the instruction codes or the execution engine
may execute the compiled native mstructions generated by
the JIT compiler. Furthermore, identifying a second instruc-
tion code that satisfies the criteria may include at least one of
determining that the second instruction code causes a com-
puting system to perform the state transition, determining that
the second instruction code generates an interrupt, and deter-
mimng that the non-native mstruction corresponding to the
second 1nstruction code 1s a complex instruction.

According to one embodiment, a method for defining an
instruction path to be compiled by a JI'T compiler may also
include determining the number of instruction codes in the
first group of instruction codes. A method may further include
defining a maximum number of struction codes for an
istruction code path and determining 1f the number of
istruction codes 1n the first group of instruction codes
exceeds the defined maximum number of 1nstruction codes
for the instruction code path. If 1t 1s determined that the
number of mstruction codes 1n the first group of 1nstruction
codes exceeds the maximum number of instruction codes for
the mstruction code path then, at most, the maximum number
ol instruction codes may be assigned to the first group of
instruction codes while the instruction codes from the plural-
ity of instruction codes that are not assigned to the first group
ol 1nstruction codes may be assigned to a second group of
instruction codes.

According to yet another embodiment, a method for defin-
ing an instruction path to be compiled by a JIT compiler may
also include 1dentiiying a conditional jump 1nstruction 1n the
native instruction path and determining if the conditional
jump 1nstruction indicates that an instruction jump should
occur. IT1t 1s determined that the conditional jump instruction
indicates that an instruction jump should occur, then the
method may also include interpreting a second non-native
instruction corresponding to a natrve instruction to which the

10

15

20

25

30

35

40

45

50

55

60

65

20

conditional jump struction mdicates a jump should occur to
generate a third instruction code. The third instruction code
may be assigned to the first group of instruction codes, and the
first group of instruction codes may be recompiled to generate
an updated native instruction path. By allowing the native
instruction path to be updated as just described, the native
instruction path 1s capable of dynamically growing 1n size at
runtime.

FIG. 13 1s a flow chart 1llustrating a method for implement-
ing a jump instruction in a dynamic translator using instruc-
tion code translation and just-in-time (JI'T) compilation
according to one embodiment of the disclosure. A method
1300 begins at block 1302 with storing an address of a target
instruction code pointed to by a first instruction code, where
the address corresponds an address 1n a shadow memory. At
block 1304, the method 1300 may include 1dentitying when a
second instruction code at the address of the target instruction
code 1s scheduled for execution. The method 1300 may also
include, at block 1306, determiming 11 the second instruction
code 1s available at the address of the target instruction code
pointed to by the first instruction code. At block 1308, the
method 1300 may compile at least the first instruction code
and the second istruction code as a group to generate a native
instruction path 11 1t 1s determined that the second instruction
code 1s available at the address of the target instruction code.
The native 1nstruction path may include at least a first native
instruction corresponding to the first instruction code and a
second native 1nstruction corresponding to the second
instruction code, although the native instruction path may
include many more nstruction codes.

I 1s determined that the second instruction code 1s not
available at the address of the target instruction code, such as
at block 1306, a method for implementing a jump instruction
in a dynamic translator using instruction code translation and
just-in-time compilation may also include mterpreting a non-
native instruction corresponding to the second instruction
code to generate the second instruction code and compiling at
least the first instruction code and the second nstruction code
as a group to generate the native instruction path. In some
embodiments, the native instruction path may include at least
a first native instruction corresponding to the first instruction
code and a second native instruction corresponding to the
second 1nstruction code.

In one embodiment, the target instruction code may be the
target instruction code for a plurality of instruction codes and
the first mstruction code may point to a plurality of target
istruction codes. As an example, a subroutine may be called
from many different instructions, and the return from the
subroutine may go to any one of those different instructions.
Theretfore, a method for implementing a jump struction in a
dynamic translator using instruction code translation and
just-in-time compilation may also include, 1n another
embodiment, defining a maximum number of target imstruc-
tion codes for the first instruction code and compiling no more
than the maximum number of target mstruction codes with
the first instruction code to generate the native instruction
path. Compiling no more than the maximum number of target
instruction codes with the first instruction code to generate
the native 1nstruction path may, 1n some embodiments, pre-
vent an extremely long native instruction path from being
generated, which may consume a significant amount of time
to generate.

FI1G. 14 1s a tlow chart 1llustrating a method for implement-
ing an indirect operand instruction in a dynamic translator
using instruction code translation and just-in-time compila-
tion according to one embodiment of the disclosure. Method
1400 may begin at block 1402 with implementing a virtual




US 9,201,635 B2

21

machine instruction corresponding to a first instruction,
where the first instruction points to an address of a second
instruction to be executed. Method 1400 may also include, at
block 1404, determining 11 an address 1n the second 1nstruc-
tion 1s an address of a target operand or points to the address
of the target operand. Block 1404 may be completed by
determining the value of a bit in the second instruction.

At block 1406, the target operand may be retrieved based,
at least 1n part, on determining i1 the address in the second
instruction 1s the address of the target operand or points to the
address of the target operand. According to one embodiment,
the target mnstruction may be retrieved from either the address
in the second instruction or the address pointed to by the
address 1n the second 1nstruction. At block 1408, the retrieved
target operand may be implemented. In one embodiment, the
address of the second 1nstruction, the address 1n the second
istruction, and the address of the target operand may be
addresses 1n shadow memory, non-native memory, and/or
native memory.

FIG. 15 1s a flow chart 1llustrating a method for executing
a non-compiled instruction code during execution of a com-
piled instruction path according to one embodiment of the
disclosure. The method 1500 may begin at block 1502 with
implementing a first virtual machine instruction by executing
a first native nstruction part of a native mstruction path gen-
erated by compiling a group of instruction codes. Method
1500 may also include, at block 1504, determining if the next
instruction 1 line for execution includes a second native
instruction 1n the native instruction path or a non-compiled
instruction code. At block 1506, a second virtual machine
instruction may be implemented by executing the non-com-
piled instruction code 11 1t 1s determined that the next instruc-
tion in line for execution 1s the non-compiled instruction
code.

Although not shown, the method 1500 may also include
transierring execution of instructions to implement virtual
machine instructions from the compiled native instruction
path to the direct instruction code translator 11 1t 1s determined
that the next instruction in line for execution 1s the non-
compiled instruction code. Additionally or alternatively, the
method 1500 may further include implementing a third vir-
tual machine instruction by executing the second native
instruction in the native instruction path after implementing
the second virtual machine 1nstruction. Therefore, execution
of mstructions to implement virtual machine mstructions may
also be transferred from the direct instruction code translator
to the compiled native instruction path after implementing the
second virtual machine instruction.

A method for executing a non-compiled instruction code
during execution of a compiled instruction path may include
implementing a second virtual machine instruction by
executing the second native mstruction in the native mstruc-
tion path 1f 1t 1s determined that the next instruction in line for
execution 1s the second native instruction and implementing a
third virtual machine instruction by executing a third native
instruction in the native instruction path after implementing
the second virtual machine instruction. According to one
embodiment, a shadow memory may be accessed from which
the non-compiled instruction code may be retrieved upon
determining that the next instruction in line for execution 1s
the non-compiled instruction code.

FIG. 16 1s a flow chart 1llustrating a method for synchro-
nously and asynchronously operating a dynamic translator
according to one embodiment of the disclosure. A method
1600 may start at block 1602 with receiving an input at a user
interface, where the input specifies whether to operate the
dynamic translator in synchronous mode or asynchronous

10

15

20

25

30

35

40

45

50

55

60

65

22

mode. At block 1604, the dynamic translator may be operated
in one of synchronous mode or asynchronous mode based, at
least 1n part, on the received mput.

In synchronous operation, the dynamic translator may
execute a first number of instruction codes generated by inter-
preting non-native instructions and storing the result of the
execution of the first number of instruction codes. After stor-
ing the result, the first number of instruction codes may be
compiled with a JIT compiler to generate a first number of
native 1nstructions corresponding to the first number of
instruction codes. The state of execution of the dynamic trans-
lator may then be reset to correspond to the state of execution
of the dynamic translator immediately prior to the execution
of the first number of instruction codes with the dynamic
translator. After resetting the state of execution, the dynamic
translator may then execute the first number of native mnstruc-
tions. The result of the execution of the first number of native
istructions may be read and then compared to the stored
result of the execution of the first number of instruction codes
to 1dentily errors. For example, an error may be i1dentified 11
alter comparing the results it 1s determined that the results do
not match.

In asynchronous operation, the dynamic translator may
execute a first number of 1instruction codes generated by inter-
preting non-native instructions and compiling the first num-
ber of instruction codes with a JIT compiler to generate a first
number of native mstructions corresponding to the first num-
ber of mnstruction codes. Upon reaching an instruction code in
line for execution that has already been compiled with the JIT
compiler, anative instruction corresponding to the instruction
code and generated by compiling the istruction code may be
executed. To i1dentily errors, the execution of the dynamic
translator in asynchronous mode may be momitored. In asyn-
chronous mode, the compiling of the first number of mstruc-
tion codes with a JI'T compiler may be performed 1n parallel
with the executing of the first number of mstruction codes or
the first number of native instructions corresponding to the
first number of mstruction codes.

In some embodiments, the method 1600 may also include
monitoring the operation of the dynamic translator being
operated 1n one of synchronous mode or asynchronous mode.
In addition, the method 1600 may turther include executing
with the dynamic translator a combination of instructions
including a plurality of instruction codes generated by inter-
preting a plurality of non-native instructions and a plurality of
compiled native instructions generated by compiling the plu-
rality of istruction codes.

FI1G. 17 1s a tlow chart illustrating a method for handling an
execution interrupt 1n a dynamic translator according to one
embodiment of the disclosure. A method 1700 may start at
block 1702 with detecting a first execution interrupt while
executing a first mstruction code 1 an emulation environ-
ment. In one example, the first execution mterrupt may cor-
respond to an interrupt associated with the hardware and/or an
interrupt associated with the emulation environment. In
another example, the first execution interrupt may be an
instruction 1n non-native memory, such as a non-native
instruction, an instruction in shadow memory, such as an
instruction code, or an mstruction 1n native memory, such as
a compiled 1nstruction. In other examples, imstruction codes
executed 1n an emulation environment may be generated by
interpreting non-native instructions, and the dynamic trans-
lator may execute the plurality of instruction codes 1n the
emulation environment. The dynamic translator may also
execute a plurality of compiled native 1nstructions generated
by compiling the plurality of instruction codes.




US 9,201,635 B2

23

At block 1704, method 1700 may save the emulation envi-
ronment state to a memory. The emulation environment state
may provide information associated with the interrupted first
instruction code. For example, the saved emulation environ-
ment state may provide information identifying the location,
within the first instruction code, at which the first instruction
code was interrupted.

The method 1700 may also include, at block 1706, pro-
cessing the first execution interrupt instruction that inter-
rupted the execution of the first instruction code. For
example, a non-native mstruction associated with the {first
execution nterrupt instruction may be retrieved from non-
nattve memory and interpreted to generate an interrupt
instruction code corresponding to the first execution interrupt
instruction. The interrupt instruction code may be subse-
quently executed. In another example, an instruction code
corresponding to the first execution interrupt instruction may
be retrieved from the shadow memory and subsequently
executed. In yet another example, a native instruction corre-
sponding to the first execution interrupt nstruction may be
retrieved from native memory and subsequently executed.

In some embodiments, an interrupt instruction may also be
interrupted. For example, a second execution interrupt may
be detected while processing the first execution interrupt. In
some embodiments, the first execution interrupt may have
higher priority than the second interrupt, therefore processing,
ol the first execution interrupt continues despite the detection
of the second execution interrupt. The second interrupt may
then be processed after the processing of the first execution
interrupt has been completed or the second interrupt may be
held 1n a pending state until 1t has higher priority than an
instruction being executed. According to another embodi-
ment, the second execution interrupt may have a higher pri-
ority than the first execution interrupt. If the second execution
interrupt has a higher priority than the first execution inter-
rupt, then the execution state associated with the first execu-
tion interrupt may be saved to memory, and the second execu-
tion interrupt may be processed. Alfter processing the second
execution interrupt, the saved state associated with the first
execution interrupt may be retrieved, and the first execution
interrupt may be processed based, at least in part, on the
retrieved state associated with the first execution interrupt.
According to another embodiment, the first interrupt may be
held 1n a pending state until 1t has higher priority than an
instruction being executed.

Atblock 1708, the saved emulation environment state may
be retrieved. At block 1710, a second 1nstruction code may be
executed based, at least 1n part, on the retrieved emulation
environment state. For example, the second 1nstruction code
may correspond to the iterrupted first instruction code, and
retrieving the saved emulation environment state may corre-
spond to retrieving information related to where the first
instruction code was nterrupted. If the second instruction
code corresponds to the mnterrupted first instruction code, then
executing the second instruction code based on the retrieved
emulation environment state, such as at block 1710, may
cause execution of the mstruction codes to resume at the state
in the emulation environment where execution was inter-
rupted, such as during the execution of the first instruction
code. Furthermore, because the second instruction code cor-
responds to the first mstruction code, the instruction code
corresponding to a non-native instruction for the second
instruction code already exists in shadow memory (i.e., the
second 1nstruction code 1s the first instruction code 1n shadow
memory). Therefore, executing the second instruction code
based on the retrieved emulation environment state, such as at
block 1710, may avoid fetching and interpreting a non-native

10

15

20

25

30

35

40

45

50

55

60

65

24

istruction associated with the second instruction code to
resume execution 1n the emulation environment.

According to another embodiment, the second instruction
code may correspond to a different instruction code than the
interrupted first mstruction code. I the second instruction
code corresponds to a different instruction code than the
interrupted first instruction code, then execution of the second
istruction code, such as at block 1710, may commence at a
different location than the location, within the first instruction
code, at which the first instruction code was interrupted.

FIG. 18 illustrates one embodiment of a system 1800 for an
information system, including a system for executing non-
native mstructions 1n a computing system having a processor
configured to execute native instructions. The system 1800
may include a server 1802, a data storage device 1806, a
network 1808, and a user interface device 1810. The server
1802 may also be a hypervisor-based system executing one or
more guest partitions hosting operating systems with mod-
ules having server configuration information. In a further
embodiment, the system 1800 may include a storage control-
ler 1804, or a storage server configured to manage data com-
munications between the data storage device 1806 and the
server 1802 or other components 1n communication with the
network 1808. In an alternative embodiment, the storage con-
troller 1804 may be coupled to the network 1808.

In one embodiment, the user interface device 1810 1s
referred to broadly and 1s intended to encompass a suitable
processor-based device such as a desktop computer, a laptop
computer, a personal digital assistant (PDA) or tablet com-
puter, a smartphone or other mobile communication device
having access to the network 1808. When the device 1810 1s
a mobile device, sensors (not shown), such as a camera or
accelerometer, may be embedded in the device 1810. When
the device 1810 1s a desktop computer the sensors may be
embedded 1n an attachment (not shown) to the device 1810. In
a fturther embodiment, the user interface device 1810 may
access the Internet or other wide area or local area network to
access a web application or web service hosted by the server
1802 and may provide a user interface for enabling a user to
enter or recerve mformation.

The network 1808 may facilitate communications of data
between the server 1802 and the user interface device 1810.
The network 1808 may include any type of communications
network including, but not limited to, a direct PC-to-PC con-
nection, a local area network (LAN), a wide area network
(WAN), amodem-to-modem connection, the Internet, a com-
bination of the above, or any other communications network
now known or later developed within the networking arts
which permits two or more computers to communicate.

FIG. 19 illustrates a computer system 1900 adapted
according to certain embodiments of the server 1802 and/or
the user interface device 1810. The central processing unit
(“CPU”) 1902 1s coupled to the system bus 1904. The CPU
1902 may be a general purpose CPU or microprocessor,
graphics processing umt (“GPU”’), and/or microcontroller.
The present embodiments are not restricted by the architec-
ture of the CPU 1902 so long as the CPU 1902, whether
directly or indirectly, supports the operations as described
herein. The CPU 1902 may execute the various logical
instructions according to the present embodiments.

The computer system 1900 also may include random
access memory (RAM) 1908, which may be synchronous
RAM (SRAM), dynamic RAM (DRAM), synchronous
dynamic RAM (SDRAM), or the like. The computer system
1900 may utilize RAM 1908 to store the various data struc-
tures used by a software application. The computer system

1900 may also include read only memory (ROM) 1906 which




US 9,201,635 B2

25

may be PROM, EPROM, EEPROM, optical storage, or the
like. The ROM may store configuration information for boot-
ing the computer system 1900. The RAM 1908 and the ROM
1906 hold user and system data, and both the RAM 1908 and
the ROM 1906 may be randomly accessed.

The computer system 1900 may also include an mput/
output (I/0) adapter 1910, a communications adapter 1914, a
user interface adapter 1916, and a display adapter 1922. The
I/0 adapter 1910 and/or the user interface adapter 1916 may,
in certain embodiments, enable a user to interact with the
computer system 1900. In a further embodiment, the display
adapter 1922 may display a graphical user interface (GUI)
associated with a software or web-based application on a
display device 1924, such as a monitor or touch screen.

The I/O adapter 1910 may couple one or more storage
devices 1912, such as one or more of a hard drive, a solid state
storage device, a flash drive, a compact disc (CD) drive, a
floppy disk drive, and a tape drive, to the computer system
1900. According to one embodiment, the data storage 1912
may be a separate server coupled to the computer system
1900 through a network connection to the I/O adapter 1910.
The communications adapter 1914 may be adapted to couple
the computer system 1900 to the network 1808, which may be
one or more of a LAN, WAN, and/or the Internet. The user
interface adapter 1916 couples user input devices, such as a
keyboard 1920, a pointing device 1918, and/or a touch screen

(not shown) to the computer system 1900. The display
adapter 1922 may be driven by the CPU 1902 to control the

display on the display device 1924. Any of the devices 1902-
1922 may be physical and/or logical.

The applications of the present disclosure are not limited to
the architecture of computer system 1900. Rather the com-
puter system 1900 1s provided as an example of one type of
computing device that may be adapted to perform the func-
tions of the server 1802 and/or the user interface device 1810.
For example, any suitable processor-based device may be
utilized including, without limitation, personal data assistants
(PDASs), tablet computers, smartphones, computer game con-
soles, and multi-processor servers. Moreover, the systems
and methods of the present disclosure may be implemented
on application specific integrated circuits (ASIC), very large
scale integrated (VLSI) circuits, or other circuitry. In fact,
persons of ordinary skill in the art may utilize any number of
suitable structures capable of executing logical operations
according to the described embodiments. For example, the
computer system 1900 may be virtualized for access by mul-
tiple users and/or applications.

FI1G. 20A 1s a block diagram 1llustrating a server hosting an
emulated software environment for virtualization according
to one embodiment of the disclosure. An operating system
2002 executing on a server includes drivers for accessing
hardware components, such as a networking layer 2004 for
accessing the communications adapter 2014. The operating
system 2002 may be, for example, Linux. An emulated envi-
ronment 2008 1n the operating system 2002 executes a pro-
gram 2010, such as Communications Platform (CPComm) or
Communications Platform for Open Systems (CPCommOS).
The program 2010 accesses the networking layer 2004 of the
operating system 2002 through a non-emulated interface
2006, such as extended network mput output processor
(XNIOP). The non-emulated interface 2006 translates
requests from the program 2010 executing 1n the emulated
environment 2008 for the networking layer 2004 of the oper-
ating system 2002.

In another example, hardware in a computer system may be
virtualized through a hypervisor. F1G. 20B 1s a block diagram
illustrating a server hosting an emulated hardware environ-

10

15

20

25

30

35

40

45

50

55

60

65

26

ment according to one embodiment of the disclosure. Users
2052, 2054, 2056 may access the hardware 2060 through a
hypervisor 2058. The hypervisor 2058 may be integrated with
the hardware 2060 to provide virtualization of the hardware
2060 without an operating system, such as i1n the configura-
tion 1llustrated in FIG. 20A. The hypervisor 2058 may pro-
vide access to the hardware 2060, including the CPU 1902
and the communications adaptor 1914.

Referring now to FIGS. 1-20 overall, embodiments of the
disclosure may be practiced in various types of electrical
circuits comprising discrete electronic elements, packaged or
integrated electronic chips containing logic gates, a circuit
utilizing a microprocessor, or on a single chip containing
clectronic elements or microprocessors. Embodiments of the
disclosure may also be practiced using other technologies
capable of performing logical operations such as, for
example, AND, OR, and NOT, including but not limited to
mechanical, optical, fluidic, and quantum technologies. In
addition, aspects of the methods described herein can be
practiced within a general purpose computer or in any other
circuits or systems.

Embodiments of the present disclosure can also be imple-
mented as a computer process (method), a computing system,
or as an article of manufacture, such as a computer program
product or computer readable media. The computer program
product may be a computer storage media readable by a
computer system and encoding a computer program of
instructions for executing a computer process. Accordingly,
embodiments of the present disclosure may be embodied 1n
hardware and/or in software (including firmware, resident
soltware, micro-code, etc.). In other words, embodiments of
the present disclosure may take the form of a computer pro-
gram product on a computer-usable or computer-readable
storage medium having computer-usable or computer-read-
able program code embodied in the medium for use by or 1n
connection with an 1nstruction execution system. A com-
puter-usable or computer-readable medium can include any
medium that includes media capable of containing or storing
the program for use by or 1n connection with the instruction
execution system, apparatus, or device.

If implemented 1n firmware and/or software, the functions
described above may be stored as one or more nstructions or
code on a computer-readable medium. Examples include
non-transitory computer-readable media encoded with a data
structure and computer-readable media encoded with a com-
puter program. Computer-readable media includes physical
computer storage media. A storage medium may be any avail-
able medium that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Disk and
disc includes compact discs (CD), laser discs, optical discs,
digital versatile discs (DVD), tloppy disks and blu-ray discs.
Generally, disks reproduce data magnetically, and discs
reproduce data optically. Combinations of the above should
also be included within the scope of computer-readable
media.

In addition to storage on computer readable medium,
instructions and/or data may be provided as signals on trans-
mission media included 1n a communication apparatus. For
example, a communication apparatus may include a trans-
ceiver having signals indicative of instructions and data. The
instructions and data are configured to cause one or more
processors to implement the functions outlined in the claims.




US 9,201,635 B2

27

Embodiments of the present disclosure, for example, are
described above with reference to block diagrams and/or
operational 1llustrations of methods, systems, and computer
program products according to embodiments of the disclo-

28

locating the first native mstruction pointed to by the first
instruction code; and

executing the first native mstruction.

3. The method of claim 1, wherein implementing a first

sure. The functions/acts noted in the blocks may occur outof 5 virtyal machine instruction corresponding to the first non-

the order as shown 1n any flowchart. For example, two blocks
shown 1n succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed in the
reverse order, depending upon the functionality/acts
involved.

While certain embodiments of the disclosure have been
described, other embodiments may exist. Furthermore,
although embodiments of the present disclosure have been
described as being associated with data stored in memory and
other storage mediums, data can also be stored on or read
from other types ol computer-readable media. Further, the
disclosed methods’ stages may be modified in any manner,
including by reordering stages and/or mserting or deleting
stages, without departing from the overall concept of the
present disclosure.

Although the present disclosure and 1ts advantages have
been described 1n detail, 1t should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the disclosure
as defined by the appended claims. Moreover, the scope of the
present application 1s not intended to be limited to the par-
ticular embodiments of the process, machine, manufacture,
composition of matter, means, methods and steps described 1in
the specification. As one of ordinary skill in the art will
readily appreciate from the present ivention, disclosure,
machines, manufacture, compositions of matter, means,
methods, or steps, presently existing or later to be developed
that perform substantially the same function or achueve sub-
stantially the same result as the corresponding embodiments
described herein may be utilized according to the present
disclosure. Accordingly, the appended claims are mntended to
include within their scope such processes, machines, manu-
facture, compositions of matter, means, methods, or steps.

What 1s claimed 1s:

1. A method for executing non-native instructions in a
computing system having a processor configured to execute
native instructions, comprising:

fetching a first non-native instruction from a plurality of

non-native instructions;

interpreting the first non-native instruction to generate a

first 1struction code;

compiling the first instruction code to generate a firstnative

instruction corresponding to the first non-native mstruc-
tion;

determining, by the processor, whether to execute the first

instruction code or the generated first native instruction;
and

implementing a first virtual machine instruction corre-

sponding to the first non-native instruction based, at
least 1n part, on determining whether to execute the first
instruction code or the first native instruction, wherein
the determining 1s based on parameters comprising at
least one of user nputs, type ol 1instruction to be
executed, and location of instruction 1n memory.

2. The method of claim 1, wherein implementing a first
virtual machine instruction corresponding to the first non-
natrve istruction based on the determination to execute the
generated first native mstruction comprises:

replacing a branch address pointed to by the first instruc-

tion code with an address of the generated first native
instruction;

10

15

20

25

30

35

40

45

50

55

60

65

native instruction based on the determination to execute the
first 1instruction code comprises:

locating a first native code fragment pointed to by the first

instruction code; and
executing the first native code fragment.
4. The method of claim 1, further comprising:
accessing a shadow memory associated with the plurality
ol non-native instructions:

determining 11 a second 1nstruction code associated with a
second non-native mnstruction 1s located 1n the shadow
memory;
fetching the second instruction code from the shadow
memory based on a determination that the second
instruction code 1s located 1n the shadow memory;

determiming whether to execute the second instruction
code or a second native instruction corresponding to the
second non-native instruction, wherein the second
natrve mstruction was generated by previously compil-
ing the second instruction code; and

implementing a second virtual machine mstruction corre-

sponding to the second non-native instruction based, at
least 1n part, on the determination of whether to execute
the second instruction code or the second native 1nstruc-
tion.

5. The method of claim 4, wherein the first non-native
instruction comprises the second non-native struction, the
first instruction code comprises the second instruction code,
the first native instruction comprises the second native
instruction, and implementing a second virtual machine
instruction comprises implementing the first virtual machine
instruction again, whereby accessing the shadow memory to
tetch the first mstruction code in order to implement the first
virtual machine instruction corresponding to the first non-
native mstruction a second time avoids reinterpreting the first
non-native instruction to implement the first virtual machine
instruction a second time.

6. The method of claim 1, further comprising:

accessing a shadow memory associated with the plurality

of non-native instructions;

determining 11 a second 1nstruction code associated with a

second non-native mstruction 1s located in the shadow
memory;

tetching the second non-native nstruction from the plural-

ity of non-native mstructions based on a determination
that the second instruction code 1s not located in the
shadow memory;

interpreting the second non-native instruction to generate

the second instruction code;

compiling the second 1nstruction code to generate a second

native instruction corresponding to the second non-na-
tive 1nstruction;
determiming whether to execute the second instruction
code or the generated second native istruction; and

implementing a second virtual machine nstruction corre-
sponding to the second non-native 1mstruction based, at
least 1n part, on the determination of whether to execute
the second 1nstruction code or the second native mstruc-
tion.

7. A computer readable medium, comprising:

a non-transitory computer readable medium comprising

code to perform the steps of:



US 9,201,635 B2

29

fetching a first non-native instruction from a plurality of

non-native instructions:

interpreting the first non-native instruction to generate a

first 1nstruction code;

compiling the first instruction code to generate a first native

instruction corresponding to the first non-native mstruc-
tion;

determining whether to execute the first instruction code or

the generated first native instruction; and
implementing a first virtual machine instruction corre-
sponding to the first non-native instruction based, at
least 1n part, on determining whether to execute the first
instruction code or the first native instruction, wherein
the determining 1s based on parameters comprising at
least one of user inputs, type of instruction to be
executed, and location of instruction 1n memory.

8. The computer readable medium of claim 7, wherein the
step of implementing a first virtual machine nstruction cor-
responding to the first non-native instruction based on the
determination to execute the generated first native instruction
COmprises:

replacing a branch address pointed to by the first instruc-

tion code with an address of the generated first native
instruction;

locating the first native instruction pointed to by the first

instruction code; and

executing the first native instruction.

9. The computer readable medium of claim 7, wherein
implementing a first virtual machine instruction correspond-
ing to the first non-native mstruction based on the determina-
tion to execute the first instruction code comprises:

locating a first native code fragment pointed to by the first

instruction code; and

executing the first native code fragment.

10. The computer readable medium of claim 7, wherein the
medium further comprises code to perform the steps of:

accessing a shadow memory associated with the plurality

of non-native 1nstructions:

determining 1f a second instruction code associated with a

second non-native 1struction is located 1n the shadow
memory;
fetching the second instruction code from the shadow
memory based on a determination that the second
instruction code 1s located 1n the shadow memory;

determining whether to execute the second instruction
code or a second native mstruction corresponding to the
second non-native 1nstruction, wherein the second
native mstruction was generated by previously compil-
ing the second instruction code; and

implementing a second virtual machine instruction corre-

sponding to the second non-native 1struction based, at
least 1n part, on the determination of whether to execute
the second instruction code or the second native nstruc-
tion.

11. The computer readable medium of claim 10, wherein
the first non-native mnstruction comprises the second non-
native instruction, the first instruction code comprises the
second 1nstruction code, the first native instruction comprises
the second native instruction, and implementing a second
virtual machine 1nstruction comprises implementing the first
virtual machine instruction again, whereby accessing the
shadow memory to fetch the first instruction code 1n order to
implement the first virtual machine instruction corresponding
to the first non-native mstruction a second time avoids rein-
terpreting the first non-native instruction to implement the
first virtual machine 1nstruction a second time.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

12. The computer readable medium of claim 7, wherein the
medium further comprises code to perform the steps of:
accessing a shadow memory associated with the plurality
ol non-native 1nstructions;

determining 11 a second 1nstruction code associated with a
second non-native mstruction 1s located in the shadow
memory;

tetching the second non-native mnstruction from the plural-

ity of non-native mstructions based on a determination
that the second instruction code 1s not located in the
shadow memory;

interpreting the second non-native instruction to generate

the second instruction code;

compiling the second 1nstruction code to generate a second

native instruction corresponding to the second non-na-
tive 1nstruction;
determining whether to execute the second instruction
code or the generated second native instruction; and

implementing a second virtual machine nstruction corre-
sponding to the second non-native 1mstruction based, at
least 1n part, on the determination of whether to execute
the second 1nstruction code or the second native mstruc-
tion.

13. An apparatus, comprising;:

a memory; and

a processor coupled to the memory, wherein the processor

1s configured to perform the steps of:

fetching a first non-native instruction from a plurality of

non-native instructions;

interpreting the first non-native instruction to generate a

first 1nstruction code;

compiling the first instruction code to generate a first native

instruction corresponding to the first non-native mstruc-
tion;

determining whether to execute the first instruction code or

the generated first native instruction; and
implementing a first virtual machine instruction corre-
sponding to the first non-native instruction based, at
least 1n part, on determining whether to execute the first
instruction code or the first native instruction, wherein
the determining 1s based on parameters comprising at
least one of user inputs, type of instruction to be
executed, and location of instruction in memory.

14. The apparatus of claam 13, wherein implementing a
first virtual machine instruction corresponding to the first
non-native instruction based on the determination to execute
the generated first native istruction comprises:

replacing a branch address pointed to by the first instruc-

tion code with an address of the generated first native
instruction;

locating the first native mstruction pointed to by the first

instruction code; and

executing the first native mstruction.

15. The apparatus of claam 13, wherein implementing a
first virtual machine instruction corresponding to the first
non-native instruction based on the determination to execute
the first instruction code comprises:

locating a first native code fragment pointed to by the first

instruction code; and

executing the first native code fragment.

16. The apparatus of claim 13, wherein the processor 1s
turther configured to perform the steps of:

accessing a shadow memory associated with the plurality

of non-native 1nstructions;

determining 11 a second 1nstruction code associated with a

second non-native mstruction 1s located 1n the shadow
memory;



US 9,201,635 B2

31

fetching the second instruction code from the shadow
memory based on a determination that the second
instruction code 1s located 1n the shadow memory;

determining whether to execute the second instruction
code or a second native instruction corresponding to the
second non-native instruction, wherein the second
native mstruction was generated by previously compil-
ing the second instruction code; and

implementing a second virtual machine instruction corre-

sponding to the second non-native 1struction based, at
least 1n part, on the determination of whether to execute
the second 1nstruction code or the second native mstruc-
tion.

17. The apparatus of claim 16, wherein the first non-native
istruction comprises the second non-native mstruction, the
first instruction code comprises the second instruction code,
the first native 1instruction comprises the second native
instruction, and implementing a second virtual machine
instruction comprises implementing the first virtual machine
instruction again, whereby accessing the shadow memory to
tetch the first instruction code in order to implement the first
virtual machine istruction corresponding to the first non-
native mstruction a second time avoids reinterpreting the first
non-native mstruction to implement the first virtual machine
instruction a second time.

5

10

15

20

32

18. The apparatus of claim 13, wherein the processor 1s

turther configured to perform the steps of:

accessing a shadow memory associated with the plurality
ol non-native 1nstructions;

determiming 1f a second 1nstruction code associated with a
second non-native mstruction 1s located in the shadow
memory;

fetching the second non-native instruction from the plural-
ity of non-native mstructions based on a determination
that the second 1nstruction code 1s not located in the
shadow memory;

interpreting the second non-native instruction to generate
the second 1nstruction code;

compiling the second instruction code to generate a second
native 1struction corresponding to the second non-na-
tive 1nstruction;

determining whether to execute the second instruction
code or the generated second native mstruction; and

implementing a second virtual machine nstruction corre-
sponding to the second non-native instruction based, at
least 1n part, on the determination of whether to execute
the second instruction code or the second native 1nstruc-
tion.



	Front Page
	Drawings
	Specification
	Claims

