
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0077847 A1

Hunter et al.

US 20160077847A1

(43) Pub. Date: Mar. 17, 2016

(54)

(71)

(72)

(73)

(21)

(22)

SYNCHRONIZATION OF PHYSICAL
FUNCTIONS AND VIRTUAL FUNCTIONS
WITHNAFABRIC

Applicants: James R. Hunter, Malvern, PA (US);
Sung V. Huynh, Malvern, PA (US);
Edward T. Cavanagh, Malvern, PA
(US); John A. Landis, Malvern, PA
(US)

Inventors: James R. Hunter, Malvern, PA (US);
Sung V. Huynh, Malvern, PA (US);
Edward T. Cavanagh, Malvern, PA
(US); John A. Landis, Malvern, PA
(US)

Assignee: UNISYS CORPORATION, Blue Bell,
PA (US)

Appl. No.: 14/487,200

Filed: Sep. 16, 2014

interconnect Service Guest Partitio 54
Partitio 602
interconnect w E Appapal App

Virtual Function
river 24

Physical Function .
river 322 Guest CS 605

8 - X - - - M - - -

f0. Devices 64

hardware layer 310

Publication Classification

(51) Int. Cl.
G06F 9/455 (2006.01)
G06F 3/20 (2006.01)

(52) U.S. Cl.
CPC G06F 9/455 (2013.01); G06F 13/20

(2013.01)
(57) ABSTRACT
Methods and systems for instantiating a virtual function in a
partition of a multi-partition virtualization system imple
mented at least in part on a computing device are disclosed.
One method includes initializing a partition on the computing
device, including determining a virtual function to be associ
ated with the partition, the virtual function associated with a
physical function of an I/O device, and, prior to attaching a
processor to the partition, determining if the physical function
is in a ready state and capable of being associated with the
virtual function. The method further includes, upon determin
ing that the physical function is in the ready state and capable
of being associated with the virtual function, attaching the
processor to the partition, thereby allowing the partition to
begin execution.

if Service Partition
36

gest (S6S

Wirta retir:
Driver 64

Trusted Code Base

SR-PC v. 620

writor 6.
XML file config"

iie S.26

vertory 6,

if C Config
Memory Space
(e.g., ECAM) 6.17

US 2016/007.7847 A1 Mar. 17, 2016 Sheet 1 of 12 Patent Application Publication

suo?ejado ? pueuluop | ***************************************&««««««««««««««««««««««««««««««««*«**«**«*&««««««««««««««««************************«**«*&&

US 2016/007.7847 A1 Mar. 17, 2016 Sheet 2 of 12 Patent Application Publication

US 2016/007.7847 A1 Mar. 17, 2016 Sheet 3 of 12 Patent Application Publication

£ "5014

|

Patent Application Publication Mar. 17, 2016 Sheet 4 of 12 US 2016/007.7847 A1

Network
Routing iOS

Patent Application Publication Mar. 17, 2016 Sheet 5 of 12 US 2016/007.7847 A1

System Memory 204 fo Subsystem 222
Control partition viennory input evices

: 8

2a:

Resource age 24 Output Device:{s}

intercorrect Service

Partition weirdry 253 Storage Devices
223.

SR-252
i ruste Code

Continuiticatio 8

Corrections 230. artitioned vising:ry 23.2

US 2016/007.7847 A1 Mar. 17, 2016 Sheet 6 of 12 Patent Application Publication

- - - - - - - -ñ?????- - - -

4

Patent Application Publication Mar. 17, 2016 Sheet 7 of 12 US 2016/007.7847 A1

if Configuration Memory Space
ECAM) 6.7 Xiwi, ie. 828

PF: if C device
Statis; Active ^xxxxx s ..

Driver: O Driver.di Configlitation Space
W-S evice if Wendor

Wh3C Patition i: Active BaseAddress Register's
WF2O Partition 2: Active Expansion ROW Address

WF3 Guest: Active Capabilities pointer
VFA Guest 2: Not Active SR-if Extsided

Cagai:ities Space
SR-CV Capabilities

SR-i Stats
SR-OV Corro
Stridefoffset

W-S
W. BARO

8AR
W. AR2
W 8AR3
W. BAR
WF BARs

BAR8
ARA

PF: if evice 2
Status: Active

Driver: O2 river.di
WS:

WFO Partition 3: Active
WF2. Guest: Not Active
WF3 Guest 2: Active

WF4. Guest 3: Not Active

Patent Application Publication Mar. 17, 2016 Sheet 8 of 12 US 2016/007.7847 A1

Store Physica: Dewice river in
interconnect Service Partition 32

initiate 8 OS loading Process is Guest
Partition 84

Aocate Base Address Registers Raring
partition Boot 33

Parse File Defining VF and Association
to PF ring Partitiof Boot 33 S

Activate WFS in Guest Partitions 8.

Boot into Operating Syster 82

300

Patent Application Publication Mar. 17, 2016 Sheet 9 of 12 US 2016/007.7847 A1

initialize Partition 302

x 8.

Restantiate
interceirect

Service Partition
initiate Execution in Partition 910 and Physica

W. iction

US 2016/007.7847 A1 Mar. 17, 2016 Sheet 10 of 12 Patent Application Publication

US 2016/007.7847 A1

x …****. :) &:=& 2 **** · ****. 3. ***** ... **** 3 ****, ...*..*..*; **

Mar. 17, 2016 Sheet 11 of 12 Patent Application Publication

Patent Application Publication Mar. 17, 2016 Sheet 12 of 12 US 2016/007.7847 A1

YES

YES

Reset P With SR-PCw with Persisted
Configuration weary ...

Associate Configuration viemory with
2

1100

US 2016/007,7847 A1

SYNCHRONIZATION OF PHYSICAL
FUNCTIONS AND VIRTUAL FUNCTIONS

WITHIN A FABRIC

TECHNICAL FIELD

0001. The present application relates generally to virtual
ization systems, and in particular to single-root input/output
virtualization in a distributed multi-partition virtualization
system.

BACKGROUND

0002 Computer system virtualization allows multiple
operating systems and processes to share the hardware
resources of a host computer. Ideally, the system virtualiza
tion provides resource isolation so that each operating system
does not realize that it is sharing resources with another
operating system and does not adversely affect the execution
of the other operating system. Such system virtualization
enables applications including server consolidation, co-lo
cated hosting facilities, distributed web services, applications
mobility, secure computing platforms, and other applications
that provide for efficient use of underlying hardware
SOUCS.

0003. Existing virtualization systems, such as those pro
vided by VMWare and Microsoft, have developed relatively
Sophisticated virtualization systems that are architected as a
monolithic virtualization software system that hosts each vir
tualized system. In other words, these virtualization systems
are constructed to host each of the virtualized systems on a
particular computing platform. As such, the virtualization
systems or virtual machine monitors (VMMs) associate hard
ware resources of a particular platform with each partition.
Typically, this involves sharing of resources across multiple
partitions. For example, two partitions may share a same
processor and memory resource (although may be separated
by address ranges or otherwise maintained to ensure isolated
memory management). Furthermore, two Such partitions may
also share input/output devices, such as keyboards, mice,
printing ports, Ethernet ports, or other communications inter
faces,
0004 Recently, technologies have been introduced that
simplify sharing of I/O devices in a computing system across
a plurality of virtual machines. Such technologies include
Single-Root Input/Output Virtualization (SR-IOV), which
allows a single physical device to be made available to mul
tiple separate virtual devices without requiring the virtualiza
tion system to manage time-sharing of the device across Such
virtual machines that wish to share the I/O device. In particu
lar, SR-IOV is intended to standardize a way of bypassing a
VMM’s involvement in data movement by providing inde
pendent memory space, interrupts, and DMA streams for
each virtual machine. SR-IOV architecture is designed to
allow a device to support multiple Virtual Functions (VFs)
while minimizing the hardware cost of each additional func
tion.
0005. SR-IOV-compatible I/O devices are defined by two
primary function types—physical functions (PFS) and virtual
functions (VFs). Physical functions are full PCIe functions
that include the SR-IOV Extended Capability, which is used
to configure and manage the SR-IOV functionality. Virtual
functions are lightweight PCIe functions that contain the
resources necessary for data movement but have a carefully
minimized set of configuration resources. Each virtual func

Mar. 17, 2016

tion is associated with a physical function, and relies on the
physical function for execution.
0006 Because existing SR-IOV technologies are man
aged entirely by the VMMassociated with a particular virtu
alization architecture, such I/O devices are dependent upon
continued operation of the VMM for continued proper opera
tion of the I/O device. Additionally, by managing the SR-IOV
instance, and in particular the physical function, the VMM is
required to directly manage I/O functionality, rather than
allowing an operating system or some other system special
ized to that task. Additionally, because suchVMMs are typi
cally a monolithic software system, in case of failure of Such
a VMM, the entire I/O device will become unusable.
0007 For these and other reasons, improvements are
desirable.

SUMMARY

0008. In summary, the present disclosure relates to virtu
alization systems, and in particular to methods and systems
for managing I/O devices in Such virtualization systems. In
example aspects of the present disclosure, management of
single-root I/O virtualization systems is provided in a distrib
uted multi-partition virtualization system
0009. In a first aspect, a method for instantiating a virtual
function in a partition of a multi-partition virtualization sys
tem implemented at least in part on a computing device are
disclosed. The method includes initializing a partition on the
computing device, including determining a virtual function to
be associated with the partition, the virtual function associ
ated with a physical function of an I/O device, and, prior to
attaching a processor to the partition, determining if the
physical function is in a ready state and capable of being
associated with the virtual function. The method further
includes, upon determining that the physical function is in the
ready state and capable of being associated with the virtual
function, attaching the processor to the partition, thereby
allowing the partition to begin execution.
0010. In a second aspect, a system includes a first partition
implemented on a computing system including a plurality of
processors, memory, and at least one I/O device having an
associated physical function, the physical function having a
plurality of operational states including a ready state, and a
second partition implemented on the computing system, the
second partition capable of having at least one of the plurality
of processors associated therewith to initiate execution of the
second partition and having a virtual function associated with
the physical function. The system is configured to determine,
or to associating the at least one of the plurality of processors
therewith, whether the physical function is in at least the
ready state. If the physical function is not in at least the ready
state, the system prevents association of any of the plurality of
processors with the second partition.
0011. In a third aspect, a computer readable storage
medium having computer-executable instructions stored
thereon, which, when executed by a computing system, cause
the computing system to perform a method of instantiating a
virtual function in a partition of a multi-partition virtualiza
tion system implemented at least in part on a computing
device. The method includes initializing a partition on the
computing device, including determining a virtual function to
be associated with the partition, the virtual function associ
ated with a physical function of an I/O device of the comput
ing system, and, prior to attaching a processor to the partition,
determining if the physical function is in at least a ready state.

US 2016/007,7847 A1

The method further includes, while the physical function is
not in at least the ready state, maintaining the partition in a
processors attached State, thereby preventing instantiation of
an operating system within the partition. The method also
includes, upon determining that the physical function is in at
least the ready state, attaching the processor to the partition,
thereby allowing the partition to begin execution.
0012. This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the Detailed Description. This summary is not intended to
identify key features or, essential features of the claimed
subject matter, nor is it intended to be used to limit the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 illustrates system infrastructure partitions in
an exemplary embodiment of a host system partitioned using
the para-virtualization system of the present disclosure;
0014 FIG. 2 illustrates the partitioned host of FIG. 1 and
the associated partition monitors of each partition;
0015 FIG. 3 illustrates memory mapped communication
channels amongst various partitions of the para-virtualization
system of FIG. 1;
0016 FIG. 4 illustrates a distributed multi-host system in
which aspects of the present disclosure can be implemented;
0017 FIG. 5 illustrates an example block diagram of a
host computing system useable to implement the para-virtu
alization systems of FIGS. 1-3, above;
0018 FIG. 6 illustrates a general block diagram of a multi
partition system managing SR-IOV device operations in a
para-virtualization system of the present disclosure, accord
ing to an example embodiment;
0019 FIG. 7 illustrates an example markup language file
useable to track SR-IOV device mappings and status within a
partition lacking access to privileged memory, according to
an example embodiment;
0020 FIG. 8 illustrates a flowchart of a method of man
aging physical and virtual functions of an I/O device accord
ing to an example embodiment;
0021 FIG. 9 illustrates a flowchart of a method of associ
ating a virtual function of an I/O device to a partition, accord
ing to an example embodiment;
0022 FIGS. 10A-10B illustrate processes by which physi
cal and virtual functions can be managed in the example
multi-partition system of FIG. 6; and
0023 FIG. 11 illustrates an example method of managing
a physical function and single root I/O manager in a partition
of a multi-partition system, according to an example embodi
ment.

DETAILED DESCRIPTION

0024. Various embodiments of the present invention will
be described in detail with reference to the drawings, wherein
like reference numerals represent like parts and assemblies
throughout the several views. Reference to various embodi
ments does not limit the scope of the invention, which is
limited only by the scope of the claims attached hereto. Addi
tionally, any examples set forth in this specification are not
intended to be limiting and merely set forth some of the many
possible embodiments for the claimed invention.
0025. The logical operations of the various embodiments
of the disclosure described herein are implemented as: (1) a
sequence of computer implemented steps, operations, or pro

Mar. 17, 2016

cedures running on a programmable circuit within a com
puter, and/or (2) a sequence of computer implemented steps,
operations, or procedures running on a programmable circuit
within a directory system, database, or compiler.
0026. As briefly described above, embodiments of the
present disclosure are directed to methods and systems for
managing input/output (I/O) devices in a multi-partition Vir
tualized system, and in particular managing such devices
using systems provided within the partitions themselves,
thereby accounting for failures of either the I/O devices them
selves or the partitions in which they reside.
0027. According to example embodiments discussed
herein, a single root I/O manager (SR-IOM) can be managed
within a partition itself, rather than within a virtual machine
monitor (VMM), thereby allowing the SR-IOM to be resetas
needed, and to preserve the physical function and instance of
the SR-IOM through failures of a particular VMM. The meth
ods and systems discussed herein provide for management of
physical functions and virtual functions, while providing a
mechanism allowing the virtual machine (rather than the
virtualization software itself, or VMM) to have access to
privileged memory at the hardware level that is used for
SR-IOV mappings.
0028. In the context of the present disclosure, virtualiza
tion software generally corresponds to Software that executes
natively on a computing system, through which non-native
software can be executed by hosting that software. In such
cases, the virtualization Software exposes those native
resources in a way that is recognizable to the non-native
software. By way of reference, non-native software, other
wise referred to herein as “virtualized software' or a “virtu
alized system, refers to software not natively executed on a
particular hardware system, for example due to it being writ
ten for execution by a different type of microprocessor con
figured to execute a different native instruction set. In some of
the examples discussed herein, the native Software set can be
the x86-32, x86-64, or IA64 instruction set from Intel Cor
poration of Sunnyvale, Calif., while the non-native or virtu
alized system might be compiled for execution on an OS2200
system from Unisys Corporation of Blue Bell, Pa. However,
it is understood that the principles of the present disclosure
are not thereby limited; rather, non-native software simply
can correspond to Software not hosted or executed directly on
hardware resources in the absence of a monitor system used to
manage such execution, and to provide an abstraction layer
between the application or workload to be executed and the
underlying hardware resources,

I. Para-Virtualization System Architecture

0029 Referring to FIG. 1, an example arrangement of a
para-virtualization system is shown that can be used in imple
menting the SR-IOV-based the features mentioned above. In
Some embodiments, the architecture discussed herein uses
the principle of least privilege to run code at the lowest prac
tical privilege. To do this, special infrastructure partitions run
resource management and physical I/O device drivers, FIG. 1
illustrates system infrastructure partitions on the left and user
guest partitions on the right. Host hardware resource manage
ment runs as a control application in a special control parti
tion. This control application implements a server for a com
mand channel to accept transactional requests for assignment
of resources to partitions. The control application maintains
the master in-memory database of the hardware resource

US 2016/007,7847 A1

allocations. The control application also provides a read only
view of individual partitions to the associated partition moni
tors,
0030. In FIG. 1, partitioned host (hardware) system (or
node), shown as host computing system 10, has lesser privi
leged memory that is divided into distinct partitions including
special infrastructure partitions such as boot partition 12, idle
partition 13, control partition 14, first and second I/O parti
tions 16 and 18, command partition 20, operations partition
22, and interconnect service partition 24, as well as virtual
guest partitions 26 and 28. As illustrated, the partitions 12-28
do not directly access the underlying privileged memory and
processor registers 30 but instead accesses the privileged
memory and processor registers 30 via a hypervisor system
call interface 32 that provides context switches amongst the
partitions 12-28 in a conventional fashion. Unlike conven
tional VMMs and hypervisors, however, the resource man
agement functions of the partitioned host computing system
10 of FIG. 1 are implemented in the special infrastructure
partitions 12-22. Furthermore, rather than requiring re-write
of portions of the guest operating system, drivers can be
provided in the guest operating system environments that can
execute system calls. As explained in further detail in U.S.
Pat. No. 7,984,104, assigned to Unisys Corporation of Blue
Bell, Pa., these special infrastructure partitions 12-24 control
resource management and physical I/O device drivers that
are, in turn, used by operating systems operating as guests in
the guest partitions 26-28. Of course, many other guest par
titions may be implemented in a particular host computing
system 10 partitioned in accordance with the techniques of
the present disclosure.
0031. A boot partition 12 contains the host hoot firmware
and functions to initially load the control, I/O and command
partitions (elements 14-20). Once launched, the resource
management "control’ partition 14 includes minimal firm
ware that tracks resource usage using a tracking application
referred to herein as a control or resource management appli
cation. Host resource management decisions are performed
in command partition 20 and distributed decisions amongst
partitions in one or more host computing systems 10 are
managed by operations partition 22. I/O to disk drives and the
like is controlled by one or both of I/O partitions 16 and 18 so
as to provide both failover and load balancing capabilities.
Operating systems in the guest partitions 24, 26, and 28
communicate with the I/O partitions 16 and 18 via memory
channels (FIG. 3) established by the control partition 14. The
partitions communicate only via the memory channels. Hard
ware I/O resources are allocated only to the I/O partitions 16,
18. In the configuration of FIG. 1, the hypervisor system call
interface 32 is essentially reduced to context Switching and
containment elements (monitors) for the respective parti
tions.

0032. The resource manager application of the control
partition 14, shown as application 40 in FIG. 3, manages a
resource database 33 that keeps track of assignment of
resources to partitions and further serves a command channel
38 to accept transactional requests for assignment of the
resources to respective partitions. As illustrated in FIG. 2,
control partition 14 also includes a partition (lead) monitor 34
that is similar to a virtual machine monitor (VMM) except
that it provides individual read-only views of the resource
database in the control partition 14 to associated partition
monitors 36 of each partition. Thus, unlike conventional
VMMs, each partition has its own monitor 36 per VCPU of the

Mar. 17, 2016

partition such that failure of the monitor 36 does not bring
down the entire host computing system 10. As will be
explained below, the guest operating systems in the respective
partitions 26, 28 (referred to herein as "guest partitions') are
modified to access the associated partition monitors 36 that
implement together with hypervisor system call interface 32
a communications mechanism through which the control,
I/O, and any other special infrastructure partitions 14-24 may
initiate communications with each other and with the respec
tive guest partitions.
0033. The partition monitors 36 in each partition constrain
the guest OS and its applications to the assigned resources.
Each monitor 36 implements a system call interface 32 that is
used by the guest OS of its partition to request usage of
allocated resources. The system call interface 32 includes
protection exceptions that occur when the guest OS attempts
to use privileged processor op-codes. Different partitions can
use different monitors 36. This allows support of multiple
system call interfaces 32 and for these standards to evolve
over time. It also allows independent upgrade of monitor
components in different partitions.
0034. The monitor 36 is preferably aware of processor
capabilities so that it may he optimized to utilize any available
processor virtualization support. With appropriate monitor 36
and processor Support, a guest OS in a guest partition (e.g.,
26, 28) need not be aware of the control system of the inven
tion and need not make any explicit system calls to the
monitor 36. In this case, processor virtualization interrupts
provide the necessary and sufficient system call interface 32.
However, to optimize performance, explicit calls from a guest
OS to a monitor system call interface 32 are still desirable.
0035. The monitor 36 also maintains a map of resources
allocated to the partition it monitors and ensures that the guest
OS (and applications) in its partition use only the allocated
hardware resources. The monitor 36 can do this since it is the
first code running in the partition at the processor's most
privileged level. The monitor 36 boots the partition firmware
at a decreased privilege. The firmware subsequently boots the
OS and applications. Normal processor protection mecha
nisms prevent the firmware, OS, and applications from ever
obtaining the processor's most privileged protection level.
0036. Unlike a conventional VMM, a monitor 36 has no
I/O interfaces. All I/O is performed by I/O hardware mapped
to I/O partitions 16, 18 that use memory channels to commu
nicate with their client partitions. A responsibility of a moni
tor 36 is instead to protect processor provided resources (e.g.,
processor privileged functions and memory management
units). The monitor 36 also protects access to I/O hardware
primarily through protection of memory mapped I/O. The
monitor 36 further provides channel endpoint capabilities
which are the basis for I/O capabilities between guest parti
tions.

0037. The monitor 34 for the control partition 14 is a
“lead monitor with two special roles. It creates and destroys
monitors 36, and also provides services to the created moni
tors 36 to aid processor context Switches. During a processor
context Switch, monitors 34, 36 save the guest partition state
in the virtual processor structure, save the privileged State in
virtual processor structure and then invoke the control moni
tor switch service. This service loads the privileged, state of
the target partition monitor and Switches to the target partition
monitor which then restores the remainder of the guest par
tition state.

US 2016/007,7847 A1

0038. The most privileged processor level (e.g., x86 ring
O) is retained by having the monitors 34, 36 running below the
system call interface 32. This is most effective if the processor
implements at least three distinct protection levels: e.g., X86
ring 1, 2, and 3 available to the guest OS and applications. The
control partition 14 connects to the monitors 34, 36 at the base
(most privileged level) of each partition. The monitor 34
grants itself read only access to the partition descriptor in the
control partition 14, and the control partition 14 has read only
access to one page of monitor state stored in the resource
database 33.

0039 Those skilled in the art will appreciate that the moni
tors 34, 36 of the invention are similar to a classic VMM in
that they constrain the partition to its assigned resources,
interrupt handlers provide protection exceptions that emulate
privileged behaviors as necessary, and system call interfaces
are implemented for “aware” contained, system code. How
ever, as explained in further detail below, the monitors 34, 36
of the invention are unlike a classic in that the master resource
database 33 is contained in a virtual (control) partition for
recoverability, the resource database 33 implements a simple
transaction mechanism, and the virtualized system is con
structed from a collection of cooperating monitors 34, 36
whereby a failure in one monitor 34, 36 need not result in
failure of all partitions and need not result in the failure of a
multiprocessor/multi-core partition; in particular, any sym
metric multiprocessing system can, due to use of a monitor
per execution core, preserve operation of the partition using
remaining execution cores. Furthermore, failure of a single
physical processing unit need not result in failure of all par
titions of a system, since partitions are affiliated with different
processing units.
0040. The monitors 34, 36 of the invention are also differ
ent from classic VMMs in that each partition is contained by
its assigned monitor(s), partitions with simpler containment
requirements can use simpler and thus more reliable (and
higher security) monitor implementations, and the monitor
implementations for different partitions may, but need not be,
shared. Also, unlike conventional VMMs, a lead monitor 34
provides access by other monitors 36 to the control partition
resource database 33.

0041 Partitions in the control environment include the
available resources organized by host computing system 10.
Available computing resources in a host node, also referred to
herein as a host computing system are described by way of
example in FIGS. 4-5. Generally, a partition is a software
construct (that may be partially hardware assisted) that allows
a hardware system platform (or hardware partition) to be
"partitioned” or separated., into independent operating envi
ronments. The degree of hardware assist (e.g., physical hard
ware separation) is platform dependent but by definition is
less than 100% (since by definition a 100% hardware assist
provides hardware partitions). The hardware assist may be
provided by the processor or other platform hardware fea
tures. For example, each partition may be associated with a
separate processing core or cores, but may each be associated
with a separate portion of the same system memory, network
ing resources, or other features. Or, partitions may time-share
processing resources, but be associated with separate
memory, networking, and/or peripheral devices. In general
from the perspective of the control partition 14, a hardware
partition is generally indistinguishable from a commodity
hardware platform without partitioning hardware.

Mar. 17, 2016

0042. Unused physical processors are assigned to an Idle
partition 13. The idle partition 13 is the simplest partition that
is assigned processor resources. It contains a virtual processor
for each available physical processor, and each virtual pro
cessor executes an idle loop that contains appropriate proces
sor instructions to minimize processor power usage. The idle
virtual processors may cede time at the next control time
quantum interrupt and the monitor 36 of the idle partition 13
may switch processor context to a virtual processor in a
different partition. During host bootstrap, the boot processor
of the boot partition 12 boots all of the other processors into
the idle partition 13.
0043. In some embodiments, multiple control partitions
14 are also possible for large host partitions to avoid a single
point of failure. Each would be responsible for resources of
the appropriate portion of the host computing system 10.
Resource service allocations would be partitioned in each
portion of the host system 10. This allows clusters to run
within a host computing system 10 (one cluster node in each
Zone) and still survive failure of a control partition 14.
0044 As illustrated in FIGS. 1-3, each page of memory in
a control partition-enabled host computing system 10 is
owned by one of its partitions. Additionally, each hardware
I/O device is mapped to one of the designated I/O partitions
16, 18. These I/O partitions 16, 18 (typically two for redun
dancy) run special software that allows the I/O partitions 16,
18 to run the I/O channel server applications for sharing the
I/O hardware. Alternatively, for I/O partitions executing
using a processor implementing Intel's VT-d technology,
devices can be assigned directly to non-I/O partitions. Irre
spective of the manner of association, such channel server
applications include Virtual Ethernet switch (provides chan
nel server endpoints for network channels) and virtual storage
Switch (provides channel server endpoints for storage chan
nels). Unused memory and I/O resources are owned by a
special Available pseudo partition (not shown in figures).
One such ‘Available' pseudo partition per node of host com
puting system 10 owns all resources available for allocation,
and as such is tracked by resource database 33.
0045. In the embodiments discussed herein, control parti
tion 14 concentrates on server input/output requirements.
Plug and Play operating systems function with appropriate
virtual port/miniport drivers installed as boot time drivers.
The hypervisor system call interface 32 may, in some
embodiments, include an Extensible Firmware Interface
(EFI) to provide a modern maintainable firmware environ
ment that is used as the basis for the virtual firmware. The
firmware provides standard mechanisms to access virtual
Advanced Configuration and Power Interface (ACPI) tables.
These tables allow operating systems to use standard mecha
nisms to discover and interact with the virtual hardware.
0046. The boot partition 12 may provide certain Basic
Input/Output System (BIOS) compatibility drivers if and
when necessary to enable boot of operating systems that lack
EFI loaders. The boot partition 12 also may provide limited
Support for these operating systems.
0047. Different partitions may use different firmware
implementations or different firmware versions. The firm
ware identified by partition policy is loaded when the parti
tion is activated. During an upgrade of the monitor associated
with the control partition, running partitions continue to use
the loaded firmware, and may switch to a new version as
determined by the effective partition policy the next time the
partition is reactivated.

US 2016/007,7847 A1

0048. As noted above, monitors 36 provide enforcement
of isolation from other partitions. The monitors 36 run at the
most privileged processor level, and each partition has one or
more monitors mapped into privileged address space. Each
monitor 36 uses protection exceptions as necessary to moni
tor software within the virtual partition and to thwart any
(inadvertent) attempt to reference resources not assigned to
the associated virtual partition. Each monitor 36 constrains
the guest OS and applications in the guest partitions 26, 28.
and the lead monitor 34 constrains the resource management
application in the control partition 14 and uses its access and
special hypervisor system call interface 32 with the resource
management application to communicate individual. parti
tion resource lists with the associated partition monitors 36.
0049 According to some embodiments, there are two
main categories of partitions in the virtualization system of
the present disclosure. The user partitions run guest operat
ing systems for customer applications, and the system infra
structure partitions provide various platform infrastructure
services. For reliability, the virtualization system architecture
minimizes any implementation that is not contained within a
partition, since a failure in one partition can be contained and
need not impact other partitions.
0050. As will be explained in more detail below, system
partition, or service partition, types can include:

0051 Boot 12
0.052 Idle 13
0053 Control 14
0054 Command 20
0055 Operations 22
0056 I/O 16, 18
0057 Interconnect 24

0058. Each of these types is briefly discussed below.
0059 Boot Partition 12
0060. The boot partition 12 has assigned thereto one vir
tual CPU (corresponding to a physical processing core or a
fractional/timeshared part thereof), and contains the hard
ware partition boot firmware. It is used during recovery
operations when necessary to boot and reboot the command
partition 20 and the I/O partitions 16, 18. During bootstrap,
the boot partition 12 reserves available memory and con
structs the control partition 14 and the initial resource map in
resource database 33 with all memory assigned either to the
boot partition 12, the control partition 14, or the available
partition. The boot partition 12 initiates transactions to the
resource manager application until it has also booted the
command partition 20. At this point the control partition 14 is
attached to the command partition 20 and accepts only its
command transactions. The boot partition boot processor also
initializes all additional processors to run the idle partition 13.
0061 Idle Partition 13
0062. In example embodiments, the idle partition 13 has
one virtual CPU for each physical CPU. These virtual CPUs
are used as place holders in the system's CPU schedule. If the
control partition 14 or partition monitor 34 error recovery
must remove a CPU/partition from the schedule, it is replaced
with a reference to one of these virtual CPUs. Idle processors
run in the idle partition 13, rather than the control partition
14, to reduce the scope of error recovery should a hardware
error occur while a hardware processor is idle. In actuality, the
idle partition Suspends a processor (to reduce power and
cooling load) until the next virtual quantum interrupt. In
typical scenarios, processors can be idle a significant fraction

Mar. 17, 2016

of time. The idle time is the current shared processor head
room in the hardware partition.
0063 Control Partition 14
0064. The control partition 14 owns the memory that con
tains the resource database 33 that stores the resource alloca
tion maps. This includes the fractal map for memory, the
processor schedule, and mapped I/O hardware devices. For
Peripheral Component Interconnect (PCI) I/O hardware, this
map would allocate individual PCI devices, rather than
require I/O partitions 16, 18 to enumerate a PCI bus. Different
devices on the same PCI bus can be assigned to different I/O
partitions 16, 18. A resource allocation application in the
control partition 14 tracks the resources, applies transactions
to the resource database 33, and is also the server for the
command and control channels. The resource allocation
application runs in the control partition 14 with a minimal
operating environment. All state changes for the resource
manager application are performed as transactions. If a pro
cessor error occurs when one of its virtual CPUs is active, any
partial transactions can be rolledback. The hypervisor system
call interface 32, which is responsible for virtual processor
context switches and delivery of physical and virtual inter
rupts, does not write to the master resource maps managed by
the application. It constrains itself to memory writes of
memory associated with individual partitions and read only of
the master resource maps in the resource database 33.
0065. It is noted that, when multiple control partitions 14
are used, an associated command partition 20 can be provided
for each. This allows the resource database 33 of a large host
to be (literally) partitioned and limits the size of the largest
virtual partition in the host while reducing the impact of
failure of a control partition 14. Multiple control partitions 14
are recommended for (very) large host partitions, or anytime
a partitioned virtualized system can contain the largest Virtual
partition.
0066 Command Partition 20
0067. In example embodiments, the command partition 20
owns the resource allocation policy for each hardware parti
tion 10. The operating environment is, for example, XP
embedded which provides a .NET Framework execution
environment. Another possibility is, for example, Windows
CE and the .NET Compact Framework.
0068. The command partition 20 maintains a synchro
nized Snapshot of the resource allocation map managed by the
resource management application, and all changes to the map
are transactions coordinated through the command channel
38 (FIG. 3) with the control partition 14. The resource man
agement application implements the command channel 38 to
accept transactions only from the command partition 20.
0069. It is noted that in a multiple host hardware partition
environment, a stub command partition 20 in each host 10
could simply run in the EFI environment and use an EFI
application to pipe a command channel 38 from the control
partition 14, through a network, to a shared remote command
partition 20. However, this would have an impact on both
reliability and recovery times, while providing only a modest
cost advantage. Multiple command partitions 20 configured
for failover are also possible, especially when multiple con
trol partitions 14 are present. Restart of a command partition
20 occurs while other partitions remain operating with cur
rent resource assignments.
0070. In accordance with the present disclosure, only a
resource service in the command partition 20 makes requests
of the resource manager application in the control partition

US 2016/007,7847 A1

14. This allows actual allocations to be controlled by policy.
Agents representing the partitions (and domains, as described
below) participate to make the actual policy decisions. The
policy service provides a mechanism for autonomous man
agement of the virtual partitions. Standard and custom agents
negotiate and cooperate on the use of physical computing
resources, such as processor Scheduling and memory assign
ments, in one or more physical host partitions. There are two
cooperating services. The partition resource service is an
application in the command partition 20 that is tightly
coupled with the control resource manager application and
provides services to a higher level policy service that runs in
the operations partition 22 (described below) and is tightly
coupled with (i.e. implements) a persistent partition configu
ration database, and is a client of the resource service. The
resource service also provides monitoring services for the
presentation tier. The partition resource objects are tightly
controlled (e.g., administrators can not install resource
agents) since the system responsiveness and reliability par
tially depends on them. A catastrophic failure in one of these
objects impacts responsiveness while the server is restarted.
Recurring catastrophic failures can prevent changes to the
resource allocation.
(0071 Operations Partition 22
0072. In some embodiments, the operations partition 22
owns the configuration policy for the domains in one or more
host computing systems 10. The operations partition 22 is
also where a data center operations (policy) service runs. As
will be explained below, at least one host computing system
10 in a given virtual data center will have an operations
partition 22. Not all host computing systems 10 run an opera
tions partition 22. An operations partition 22 may be provided
by multiple hosts in a virtual data center for load balancing
and failover. The operations partition 22 does not need to run
within a given hardware partition, and need not run as a
virtual partition. The operating environment within the opera
tions partition 22 can be, for example, MICROSOFT WIN
DOWS XP Professional or Windows Server, or analogous
operating environments. This partition (cluster) can be shared
across multiple hardware partitions. The configuration policy
objects and ASP.NET user interface components run in the
operations partition 22. These components can share a virtual
partition with the command partition 20 to reduce cost for
single host deployments.
0073 For availability reasons, customization of partition
resource agents is discouraged in favor of customization of
policy agents. This is because a failure in a policy agent has
less impact than a resource agent to the availability and
responsiveness of the resource mechanisms. The policy
agents make requests of the standard resource agents. The
standard policy agents can also be extended with custom
implementations. In simple single hardware partition instal
lations, the services of the operations partition 22 can be
hosted in the command partition 20.
0074 The partition definition/configuration objects are
intended to be a purpose of customization. The partition
policy objects are clients of the resource objects. The policy
service provides configuration services for the presentation
tier.
0075. The operations partition user interface components
are typically integrated within the operations partition 22. An
exemplary implementation may use Hypertext Markup Lan
guage (HTML) Version 4, CSS, and Jscript. The operations
partition user interface is principally a web interface imple

Mar. 17, 2016

mented by an ASP.NET application that interacts with the
policy service. The user interface interacts directly with the
Partition Policy Service and indirectly with a partition data
base of the operations partition 22.
0076 A.NET smart client may also be provided, in the
operations partition 22 to provide a rich client interface that
may interact directly with the policy and resource services to
present a rich view of current (enterprise) computing
SOUCS.

0077. A resource service in the command partition 20
selects appropriate resources and creates a transaction to
assign the resources to new partitions. The transaction is sent
to the control partition 14 which saves transaction request to
un-cached memory as a transaction audit log entry (with
before and after images). The transaction is validated and
applied to the resource database 33.
0078. An audit log tracks changes due to transactions
since the last time the resource database 33 was backed up
(flushed to memory), thereby allowing transactions to be
rolled back without requiring the resource database 33 to be
frequently flushed to memory. The Successful transactions
stored in the audit log since the last resource database 33
backup may be reapplied from the audit log to restart a failed
partition. A resource also may be recovered that has been
reserved by a completed transaction. A transaction that has
not completed has reserved no resource. The audit log may be
used by the resource allocation software to rollback any par
tially completed transaction that survived the cache. It should
be noted that a transaction that has not completed would have
assigned some but not all resources specified in a transaction
to a partition and the rollback would undo that assignment if
it survived the cache.
0079 I/O Partitions 16, 18
0080. In the embodiment shown, a plurality of I/O parti
tions 16, 18 are active on a host node 10. I/O partitions 16, 18
allow multi-path PCI from the userpartitions 26-28 and allow
certain types of failures in an I/O partition 16, 18 to be
recovered transparently. All I/O hardware in host hardware
partitions is mapped to the I/O partitions 16, 18. These parti
tions are typically allocated a dedicated processor to mini
mize latency and allow interrupt affinity with limited over
head to pend interrupts that could occur when the I/O partition
16, 18 is not the current context. The configuration for the I/O
partitions 16, 18 determines whether the storage, network,
and console components share virtual partitions or run in
separate virtual partitions.
0081 Interconnect Service Partition 24
I0082. The interconnect service partition 24 coordinates
inter-partition communication in conjunction with the control
partition 14 and the command partition 20. Generally, and as
discussed. In further detail below, the interconnect service
partition 24 defines and enforces policies relating to inter
communication of partitions defined in the command parti
tion, and publishes an application programming interface
(API) that acts as a command-based interconnect that pro
vides the various guest partitions and I/O partitions 16, 18
intercommunication capabilities.
I0083. In some embodiments, the interconnect service par
tition 24 defines one or more security policies for each of the
partitions included on all platforms, including the platform on
which it resides. The interconnect service partition 24 imple
ments permissions defined in Such security policies to ensure
that partitions intercommunicate only with those other parti
tions to which they are allowed to communicate. To that end,

US 2016/007,7847 A1

and as discussed in further detail below, the interconnect
service partition 24 can define one or more security Zones,
each of which defining a “virtual fabric' of platforms capable
of intercommunication. As such, each security Zone repre
sents a virtual network of interconnected partitions. Each
virtual network defined by the interconnect service partition
24 can be configured such that partitions within the virtual
fabric can intercommunicate, but partitions not included
within that virtual fabric are incapable of communicating
with member partitions (e.g., unless both of those partitions
are part of a different virtual fabric). By defining a plurality of
virtual fabrics within each system, partitions are by default
intrusted, or closed, rather than trusted, or open. That is, in
the absence of defined virtual fabrics, the partitions are
assumed able to intercommunicate. However, with defined
virtual fabrics, only those partitions defined as part of a com
mon virtual fabric will intercommunicate, with partitions oth
erwise, by default, unable to communicate.
0084. In addition, the interconnect service partition 24
defines one or more rights assignable to each virtual fabric by
way of the security policy, thereby allowing each virtual
fabric to have assigned a variety of types of rights or services
to each partition or virtual fabric. As farther discussed below,
virtual fabrics including one or more guest partitions 26, 28
can be constructed in which a particular quality of service
(e.g., reliability, uptime, or dedicated levels of processing
and/or memory and/or bandwidth resources) is associated
with a particular virtual fabric. To ensure such service uptime,
one or more different or redundant partitions can be dynami
cally added to or subtracted from the virtual fabric.
0085. User Partitions 26-28
I0086. The user partitions 26, 28 host the workloads that
form the purpose of the virtualization system, and are
described in normal domains for a user. These are the parti
tions that a user primarily interacts with. All of the other
partition types are described in the system domains and are
generally kept out of view of typical users.
I0087 System Startup
0088. When the host computing system 10 is booted, the
EFI firmware is loaded first. The EFI firmware boots the
operating system associated with the control partition 14. The
EFI firmware uses a standard mechanism to pick the boot
target. Assuming the loader is configured and selected, boot
proceeds as follows.
0089. The loader allocates almost all of available memory

to prevent its use by the firmware. (It leaves a small pool to
allow proper operation of the firmware.) The loader then
creates the resource database's memory data structures in the
allocated memory (which includes a boot command channel
predefined in these initial data structures). The loader then
uses the EFI executable image loader to load the control
monitor 34 and monitoring application into the control parti
tion 14. The loader also jacks the boot monitor underneath the
boot partition 12 at some point before the boot loader is
finished.

0090. The loader the creates transactions to create the I/O
partition 16 and command partition 20. These special boot
partitions are loaded from special replicas of the master par
tition definitions. The command partition 20 updates these
replicas as necessary. The bootloader loads the monitor, and
firmware into the new partitions. At this point, the bootloader
transfers boot path hardware ownership from the boot firm
ware to the I/O partition 16. The I/O partition 16 begins
running and is ready to process I/O requests.

Mar. 17, 2016

0091. The loader creates transactions to create a storage
channel from the command partition 20 to an I/O partition 16,
and a command channel 38 from the command partition 20 to
the control partition 14. At this point the bootloader sends a
final command to the control partition 14 to relinquish the
command channel 38 and pass control to the command par
tition 20. The command partition 20 begins running and is
ready to initialize the resource service.
0092. The command partition operating environment is
loaded from the boot volume through the boot storage chan
nel path. The operating environment loads the command par
tition’s resource service application. The resource service
takes ownership of the command channel 38 and obtains a
snapshot of the resources from the control partitions
resource database 33.
0093. A fragment of the policy service is also running in
the command partition 20. This fragment contains a replica of
the infrastructure partitions assigned to this host. The policy
service connects to the resource service and requests that the
boot partitions are started first. The resource service identi
fies the already running partitions. By this time, the virtual
boot partition 12 is isolated and no longer running at the most
privileged processor level. The virtual boot partition 12 can
now connect to the I/O partition 16 as preparation to reboot
the command partition 20. If all I/O partitions should fail, the
virtual boot partition 12 also can connect to the control par
tition 14 and re-obtain the boot storage hardware. This is used
to reboot the first I/O partition 16.
I0094. The boot partition 12 remains running to reboot the
I/O and command partitions 16, 20 should they fail during
operation. The control partition 14 implements watchdog
timers to detect failures in these (as well as any other) parti
tions. The policy service then activates other infrastructure
partitions as dictated by the current policy. This would typi
cally start the redundant I/O partition 18.
0.095 If the present host computing system 10 is a host of
an operations partition 22, operations partition 22 is also
started at this time. The command partition 20 then listens for
requests from the distributed operations partitions. As will be
explained below, the operations partition 22 connects to com
mand partitions 20 in this and other hosts through a network
channel and network Zone. In a simple single host implemen
tation, an internal network can be used for this connection. At
this point, the distributed operations partitions 22 start the
remaining partitions as the current policy dictates.
0096 All available (not allocated) memory resources are
owned by the special available partition. In the example of
FIGS. 1 and 2, the available partition is size is zero and thus
is not visible.
(0097. Referring to FIG. 3, virtual channels are the mecha
nism partitions use in accordance with the invention to con
nect to Zones and to provide fast, safe, recoverable commu
nications amongst the partitions. For example, virtual
channels provide a mechanism for general I/O and special
purpose client/server data communication between guest par
titions 26, 28 and the I/O partitions 16, 18 in the same host.
Each virtual channel provides a command and I/O queue
(e.g., a page of shared memory) between two partitions. The
memory for a channel is allocated and owned by the guest
partition 26, 28. These queues are discussed in further detail
below in connection with the interconnect Application Pro
gramming Interface (API) as illustrated in FIGS. 6-9. The
control partition 14 maps the channel portion of client
memory into the virtual memory space of the attached server

US 2016/007,7847 A1

partition. The control application tracks channels with active
servers to protect memory during teardown of the owner guest
partition until after the server partition is disconnected from
each channel. Virtual channels can be used for command
control, and boot mechanisms as well as for traditional net
work and storage I/O.
0098. As shown in FIG. 3, the control partition 14 has a
channel server 40 that communicates with a channel client 42
of the command partition 20 to create the command channel
38. The I/O partitions 16, 18 also include channel servers 44
for each of the virtual devices accessible by channel clients
46. Such as in the operations partition 22, interconnect service
partition 24, and one or all guest partitions 26, 28. Within each
guest virtual partition 26, 28, a channel bus driver enumerates
the virtual devices, where each virtual device is a client of a
virtual channel. The dotted lines in I/O partition 16 represent
the interconnects of memory channels from the command
partition 20 and operations partitions 22 to the virtual Ether
net switch in the I/O partition 16 that may also provide a
physical connection to the appropriate network Zone. The
dotted lines in I/O partition 18 represent the interconnections
to a virtual storage Switch. Redundant connections to the
virtual Ethernet switch and virtual storage switches are not
shown in FIG.3. A dotted line in the control partition 14 from
the command channel server 40 to the transactional resource
database 33 shows the command channel connection to the
transactional resource database 33.

0099. A firmware channel bus (not shown) enumerates
virtual boot devices. A separate bus driver tailored to the
operating system enumerates these boot devices as well as
runtime only devices. Except for I/O virtual partitions 16, 18.
no PCI bus is present in the virtual partitions. This reduces
complexity and increases the reliability of all other virtual
partitions.
0100 Virtual device drivers manage each virtual device.
Virtual firmware implementations are provided for the boot
devices, and operating system drivers are provided for runt
ime devices. The device drivers convert device requests into
channel commands appropriate for the virtual device type.
0101 Additional details regarding possible implementa
tion details of a partitioned, para-virtualization system,
including discussion of multiple are discussed in U.S. Pat.
No. 7.984,104, assigned to Unisys Corporation of Blue Bell,
Pa., the disclosure of which is hereby incorporated by refer
ence in its entirety. Other example partitioning mechanisms,
and additional details regarding partitioning within Such a
computing arrangement, are described in copending U.S.
patent application Ser. No. 1 1/133,803, entitled “INTER
CONNECT PARTITION BINDING API, ALLOCATION
AND MANAGEMENT OF APPLICATION-SPECIFIC
PARTITIONS''' (Attorney Docket No. TN587A), the disclo
sure of which is hereby incorporated by reference in its
entirety.

II. Computing Systems Used to Establish SR-IOV
Functionality

0102 Referring now to FIGS. 4-5, example arrangements
of computing resources are illustrated for establishing a para
virtualization system across a plurality of host computing
systems, such as host computing systems 10 of FIGS. 1-3, are
shown. In particular, FIGS. 4-5 illustrate example computing
resources in which the para-virtualization systems described
herein can be implemented.

Mar. 17, 2016

(0103) As illustrated in FIG. 4, a system 100 in which the
para-virtualization systems of the present disclosure can be
implemented is shown. The system 100 is, in the embodiment
shown, distributed across one or more locations 102, shown
as locations 102a-c. These can correspond to locations
remote from each other, Such as a data center owned or
controlled by an organization, a third-party managed com
puting cluster used in a "cloud computing arrangement, or
other local or remote computing resources residing within a
trusted grouping. In the embodiment shown, the locations
102a-c each include one or more host systems 104. The host
systems 104 represent host computing systems, and can take
any of a number of forms. For example, the host systems 104
can be server computing systems having one or more process
ing cores and memory Subsystems and are useable for large
scale computing tasks. In one example embodiment, a host
system 104 can be as illustrated in FIG. 5.
0104. As illustrated in FIG. 4, a location 102 within the
system 100 can be organized in a variety of ways. In the
embodiment shown, a first location 102a includes network
routing equipment 106, which routes communication traffic
among the various hosts 104, for example in a Switched
network configuration. Second location 102b illustrates a
peer-to-peer arrangement of host systems. Third location
102c illustrates a ring arrangement in which messages and/or
data can be passed among the host computing systems them
selves, which provide the routing of messages. Other types of
networked arrangements could be used as well.
0105. In various embodiments, at each location 102, the
host systems 104 are interconnected by a high-speed, high
bandwidth interconnect, thereby minimizing latency due to
data transfers between host systems. In an example embodi
ment, the interconnect can be provided by an Infiniband
switched fabric communications link; in alternative embodi
ments, other types of interconnect technologies, such as Fibre
Channel, PCI Express, Serial ATA, or other interconnect
could be used as well.
0106 Among the locations 102a-c, a variety of commu
nication technologies can also be used to provide communi
cative connections of host systems 104 at different locations.
For example, a packet-switched networking arrangement,
such as via the Internet 108, could be used. Preferably, the
interconnections among locations 102a-c are provided on a
high-bandwidth connection, Such as a fiber optic communi
cation connection.

0107. In the embodiment shown, the various host system
104 at locations 102a-c can be accessed by a client computing
system 110. The client computing system can be any of a
variety of desktop or mobile computing systems, such as a
desktop, laptop, tablet, Smartphone, or other type of user
computing system. In alternative embodiments, the client
computing system I/O can correspond to a server not forming
a cooperative part of the para-virtualization system described
herein, but rather which accesses data hosted on Such a sys
tem. It is of course noted that various virtualized partitions
within a para-virtualization system could also host applica
tions accessible to a user and correspond to client systems as
well.

0108. It is noted that, in various embodiments, different
arrangements of host systems 104 within the overall system
100 can be used; for example, different host systems 104 may
have different numbers or types of processing cores, and
different capacity and type of memory and/or caching Sub
systems could be implemented in different ones of the host

US 2016/007,7847 A1

system 104. Furthermore, one or more different types of
communicative interconnect technologies might be used in
the different locations 102a-c, or within a particular location.
0109 Referring to FIG. 5, an example block diagram of a
host computing system 200 useable to implement the para
virtualization systems of FIGS. 1-3, is shown. The host com
puting system 200 can, in some embodiments, represent an
example of a host system 104 of FIG. 4, useable within the
system 100. The host computing system 200 includes one or
more processing Subsystems 202, communicatively con
nected to a system memory 204. Each processing Subsystem
202 can include one or more processing cores 206, shown as
processing cores 206a-in. Each processing core can, in various
embodiments, include one or more physical or logical pro
cessing units capable of executing computer-readable
instructions. In example embodiments, the processing cores
206a-n can be implemented using any of a variety of x86
instruction sets, such as x86, x86-64, or IA64 instruction set
architectures. In alternative embodiments, other instruction
set architectures, such as ARM, MIPS, Power, SPARC, or
other types of computing set architectures could be used.
0110. In addition, each of the processing subsystems 202
can include one or more card-based processing Subsystems
including a plurality of sockets for Supporting execution cores
206a-n, or alternatively can Support a socket-based or
mounted arrangement in which one or more execution cores
are included on a single die to be mounted within the host
computing system 200. Furthermore, in the embodiment
shown, a plurality of processing subsystems 202 can be
included in the host computing system, thereby providing a
system in which one or more cores could be allocated to
different partitions hosted by the same computing hardware;
in alternative embodiments, a single processing Subsystem
including one or more processing cores 206a-in could be
included in the host computing system 200, and that process
ing subsystem 202 could be implemented without separation
from system memory 204 by a card-based implementation.
0111. As illustrated, the system memory 204 is commu
nicatively interconnected to the one or more processing Sub
systems 202 by way of a system bus 205. The system bus is
largely dependent upon the architecture and memory speed
Support of the processing Subsystems with which it is imple
mented; although example systems provide different fre
quencies and throughputs of such system buses, in general the
bus system between processing Subsystems 202 and the sys
tem memory is a low-latency, high bandwidth connection
useable to rapidly retrieve data from the system memory 204.
System memory 204 includes one or more computer storage
media capable of storing data and/or instructions in a manner
that provides for quick retrieval of Such data and/or instruc
tions by a corresponding processing core 206. In different
embodiments, the system memory 204 is implemented in
different ways. For example, the memory 204 can be imple
mented using various types of computer storage media.
0112. In the embodiment shown, system memory 204 can
be allocated to one or more partitions using the Software
described herein. In the example illustration shown, sub
sections of the system memory 204 can be allocated to a
control partition section 210 and one or more memory parti
tions 212. The control partition section 210 includes a moni
tor 211, which in Some embodiments can represent monitor
34. The control partition section 210 can also include a
resource database 214 that tracks resources allocated to other
partitions within the host computing system 200. This can

Mar. 17, 2016

include, for example, a listing of execution cores 206, capac
ity and location of system memory 204, as well as I/O devices
or other types of devices associated with each partition. In
example embodiments, the resource database 214 can corre
spond to database 33 of FIGS. 1-3.
0113. In the embodiment shown, the system memory 204
includes memory partitions 212 which each are associated
with different partitions formed within a host computing sys
tem 200. The memory partitions 212 can, in the embodiment
shown, each include a monitor 216, an associated operating
system 218, and one or more applications or workloads 220 to
be executed within the partition. Since each memory partition
212 can be associated with one or more execution cores 206
in the resource database 214, the assigned execution cores can
be used to access and execute the monitor software 216 as
well as the operating system 218 and workloads 220.
0114. It is noted that in some embodiments, the partition
212 may include multiple instances of the monitor software
216. This may be the case, for example, for partitions that
have allocated thereto more than one execution core. For such
cases, monitor Software 216 may be a located for and used
with each execution core. Therefore, there may be more than
one such monitor executing per partition, with each monitor
handling various I/O, memory, or interrupt servicing tasks
that may be issued with respect to that particular execution
core. Each monitor Supervises execution of software within a
partition as allocated to a particular execution in core; accord
ingly, if a single partition has multiple execution cores, the
operating system 218 may allocate execution of operating
system tasks, or the workload(s) 220, to one or both of the
execution cores. The host computing device includes an I/O
subsystem 222 that includes one or more input devices 224,
output devices 226, and storage devices 228. The input
devices 224 can include, for example, a keyboard, amouse, a
pen, a Sound input device, a touch input device, etc. Output
device(s) 226 can include, for example, a display, speakers, a
printer, etc. The aforementioned devices are examples and
others may be used. Storage devices 228 store data and soft
ware instructions not directly accessible by the processing
Subsystems 202. In other words, the processing Subsystems
202 performan I/O operation to retrieve data and/or software
instructions from the storage device 228. In various embodi
ments, the secondary storage device 228 includes various
types of computer storage media. For example, the secondary
storage device 228 can include one or more magnetic disks,
magnetic tape drives, optical discs, Solid state memory
devices, and/or other types of computer storage media.
0115 The I/O subsystem 222 further includes one or more
communication connections 230. The communication con
nections 230 enable the computing device 1000 to send data
to and receive data from a network of one or more such
devices. In different embodiments, the communication con
nections can be implemented in different ways. For example,
the communications connections can include a network inter
face card implementing an Ethernet interface, a token-ring
network interface, a fiber optic network interface, a wireless
network interface (e.g., Wi-Fi, WiMax, etc.), or another type
of network interface. The communication connections 232
can also include an inter-system communication connection
for direct data communication between computing systems,
Such as a Infiniband Switched fabric communications link, or
a Fibre Channel, PCI Express, Serial ATA, or other type of
direct data communication link.

US 2016/007,7847 A1

0116. It is noted that, in some embodiments of the present
disclosure, other arrangements of a partition may be included
as well, providing various allocations of execution cores 206,
system memory 204, and I/O devices 224, 226 within the I/O
Subsystem 222. For example, a partition may include Zero or
more execution cores 206; in the event that no processor is
included with the partition, the partition may lack a monitor
216, and may instead of having an executable operating sys
tem 218 may instead include a library of commands acces
sible to one or more services partitions, for example useable
to provide I/O or memory services to those other service
partitions. Furthermore, a particular partition could be allo
cated access to a storage device 228 or communication con
nections 230.

0117. It is noted that in the present embodiment an inter
connect service partition 250 and a trusted code section 260
maintained in the system memory 204. The interconnect Ser
vice partition 250 maintains a monitor 251 providing virtu
alization services. The interconnect service partition 250 and
trusted code section 260, described in further detail below in
connection with FIGS. 6-11, host a single-root PCI manager
(SR-PCIM) 252 which manages I/O device drivers used for
virtualization of I/O devices across guest partitions located in
partitioned memory 212.
0118. It is noted that, in typical hypervisor arrangements,
failures occurring in one execution core allocated to the par
tition result in failure of the partition overall, since the failure
results in failure of the monitor associated with the partition.
In connection with the present disclosure, partitions includ
ing multiple monitors can potentially recover from Such fail
ures by restarting the execution core and associated monitor
using the remaining, correctly-executing monitor and execu
tion core. Accordingly, the partition need not fail.
0119. As used in this document, a computer storage
medium is a device or article of manufacture that stores data
and/or computer-executable instructions. Computer storage
media may include Volatile and nonvolatile, removable and
non-removable devices or articles of manufacture imple
mented in any method or technology for storage of informa
tion, such as computer readable instructions, data structures,
program modules, or other data. By way of example, and not
limitation, computer storage media may include dynamic
random access memory (DRAM), double data rate synchro
nous dynamic random access memory (DDR SDRAM),
reduced latency DRAM, DDR2 SDRAM, DDR3 SDRAM,
DDR4 SDRAM, solid state memory, read-only memory
(ROM), electrically-erasable programmable ROM, optical
discs (e.g., CD-ROMs, DVDs, etc.), magnetic disks (e.g.,
hard disks, floppy disks, etc.), magnetic tapes, and other types
of devices and/or articles of manufacture that store data.
Computer storage media generally includes at least some
tangible, non-transitory media and can, in some embodi
ments, exclude transitory wired or wireless signals. Commu
nication media may be embodied by computer readable
instructions, data structures, program modules, or other data
in a modulated data signal. Such as a carrier wave or other
transport mechanism, and includes any information delivery
media. The term “modulated data signal may describe a
signal that has one or more characteristics set or changed in
Such a mariner as to encode information in the signal. By way
of example, and not limitation, communication media may
include wired media such as a wired network or direct-wired
connection, and wireless media Such as Wi-Fi, acoustic, radio
frequency (RF), infrared, and other wireless media. In accor

Mar. 17, 2016

dance with the present disclosure, the term computer readable
media as used herein may include computer storage media,
but generally excludes entirely transitory embodiments of
communication media, such as modulated data signals.
I0120) Furthermore, embodiments of the present disclo
Sure may be practiced in an electrical circuit comprising
discrete electronic elements, packaged or integrated elec
tronic chips containing logic gates, a circuit utilizing a micro
processor, or on a single chip containing electronic elements
or microprocessors. For example, embodiments of the inven
tion may be practiced via a system-on-a-chip (SOC) where
each or many of the components illustrated in FIGS. 4-5 may
be integrated onto a single integrated circuit. Such an SOC
device may include one or more processing units, graphics
units, communications units, system virtualization units and
various application functionality all of which are integrated
(or “burned') onto the chip Substrate as a single integrated
circuit. Embodiments of the invention may also be practiced
using other technologies capable of performing logical opera
tions such as, for example, AND, OR, and NOT, including but
not limited to mechanical, optical, fluidic, and quantum tech
nologies, in addition, embodiments of the invention may be
practiced within a general purpose computer or in any other
circuits or systems.
I0121 Although particular features are discussed herein as
included within a host computing system 200, it is recognized
that in certain embodiments not all Such components or fea
tures may be included within a computing device executing
according to the methods and systems of the present disclo
sure. Furthermore, different types of hardware and/or soft
ware systems could be incorporated into Such an electronic
computing device,

III. SR-IOV Management and Operation

0.122 Referring now to FIGS. 6-11, details regarding
implementation of a single-root I/O virtualization (SR-IOV)
implementation that presents such I/O devices and manages
PCI devices in a partition or virtual machine (rather than in
the virtualization software itself) are illustrated. As briefly
described above, the implementations provided in FIGS. 6-11
allow for redundancy and failover of not only virtual func
tions in an SR-IOV framework, but fault tolerance in the
physical function and single root PCI manager (SR-PCIM).
The system also allows the SR-PCIM to be able to determine
the contents of ECAM memory that is otherwise stored in a
privileged location not typically accessible to Software
executing within a virtualized partition.
I0123 Referring first to FIG. 6, an example multi-partition
environment 600 in which aspects of the present disclosure
can be embodied is discussed. In the environment 600 as
shown, an interconnect service partition 602, as well as a
plurality of guest partitions 604 and a plurality of I/O service
partitions 606 are shown, alongside trusted code base (TCB)
608, each executing on a hardware layer 610. It is noted that
other partitions or partition types can and typically will be
executing on the hardware layer as well, for example as
discussed above in connection with FIGS. 1-3 (e.g., the boot
partition, idle partition, and other service partitions discussed
therein). Each of the interconnect service partition 602, guest
partitions 604, and I/O service partitions 606 generally per
form the functions as discussed above in FIG. 103 with
respect to correspondingly-named partitions. In addition a
trusted code base 608 can be used to perform low-level,

US 2016/007,7847 A1

privileged operations, and can be granted access at a very high
privilege level maximizing its right to view/modify system
memory).
0.124. Furthermore, the hardware layer 610 generally
includes one or more processing cores 612, I/O devices 614,
and a memory 616. The hardware layer 610 can be imple
mented in any manner suitable for use within a distributed
multi-partition system, for example in the same or different
host systems. Any such host system as described above in
connection with FIGS. 4-5 would be suitable, in connection
with the present disclosure.
0125. In the embodiment shown in FIG. 6, each of the
interconnect service partition 602, guest partitions 604, and
I/O service partitions 606 include a monitor 601 operating as
virtualization software. Each also has a virtual BIOS, shown
as BIOS 603, that allows for booting into an operating system
of that partition, such as a Guest OS 605, or in the case of the
interconnect service partition 602, optionally instead a col
lection of interconnect services 607.

0126. In the embodiment shown, the I/O devices 614 in the
hardware layer 610 include at least one SR-IOV-compliant
device capable of being mapped from one physical function
to a plurality of virtual functions. Accordingly an I/O con
figuration space 617 is included within memory 616, and
includes I/O configuration memory settings, for example
defining mappings between physical and virtual functions of
one or more SR-IOV compliant devices. Example memory
arrangements for the I/O configuration space 617 are pro
vided in the Single Root I/O Virtualization and Sharing Speci
fication, Revision 1.1, dated Jan. 20, 2010, the contents of
which are hereby incorporated by reference in their entirety.
0127. In the embodiment shown, the interconnect service
partition 602 is configured to manage SR-IOV devices by
maintaining the physical functions, while virtual functions
are distributed among partitions intended as users of particu
lar I/O device functionality. For example, one physical func
tion may be assigned to an interconnect service partition and
may be associated with one I/O service partition 606, and two
or more guest partitions 604. Alternative arrangements in
which virtual functions are assigned to different numbers or
types of partitions are possible as well, and only depend on
the selected configuration of the partitions, as is apparent
herein,
0128. In the embodiment shown, a single root PCI man
ager application (SR-PCIM) 620 is maintained partially
within the interconnect service partition 602, as well as within
the trusted code block 608. The SR-PCIM 620 manages con
figuration of the physical function and virtual functions asso
ciated with each SR-IOV-compliant I/O device. In particular,
SR-PCIM is the software responsible for the configuration of
the SR-IOV capability, processing of associated error events
and overall device controls such as power management and
hot-plug services for physical and virtual functions,
0129. In the embodiment shown, the SR-PCIM 620 man
ages storage of a physical function driver 622 associated with
a physical function of an I/O device (e.g., one of I/O devices
614), and tracks an association of that physical function to
virtual functions included in other partitions, such as guest
partitions 604 and I/O service partitions 606. The physical
function driver 622 defines the interface useable by software
to access functionality of the I/O device associated with that
driver, which is made available via virtual function drivers

Mar. 17, 2016

624 present in other partitions and which can be loaded by the
operating systems of those other partitions to access the I/O
device(s) 614.
0.130. In example embodiments, the physical function
driver 622 is generally a Linux-compliant device driver use
able in connection with a SR-IOV-compliant device. How
ever, in some embodiments, the physical function driver 622
can be modified to directly read from the 110 configuration
space 617.
I0131 Because the SR-PCIM 620 is to a large extent a
trusted code block, it as Such at least partially resides in
domain 0 on the host where it resides (e.g., within the trusted
code base 608). Furthermore, the SR-PCIM manages the
extent to which the interconnect service partition 602 is
allowed to do using the physical function driver 622. In
example embodiments, monitors 601 associated with other
partitions, such as the interconnect service partition 602,
guest partition 604, or I/O service partition 606 can each also
be included in a trusted code base and given domain 0, or root
access, to the hardware on the host system. Accordingly,
various SR-IOV functions can be distributed between the
trusted code base 608 and the various monitors 601 as may be
advantageous in different embodiments.
(0132. In the embodiment shown, the trusted code base 608
further includes a configuration file 626, shown as an XML
file. The configuration file 626 stores information defining
mappings between hardware devices and physical functions,
including physical function drivers, as well as mappings
between the physical functions and associated virtual func
tions for SR-IOV compliant devices. In example embodi
ments, the configuration file 626 also stores status informa
tion regarding each physical I/O device, physical function,
and virtual function, for example to determine whether each
is active, functional, or in an error state, in example embodi
ments, the configuration file 626 is representative of contents
of the I/O configuration space 617, but are stored such that
Software systems that do not require access rights to privi
leged memory can access and modify the file. Modifications
to the configuration file 626 are then monitored and propa
gated to the I/O configuration space 617 by the trusted code
base 608.

0133. In some embodiments, the trusted code base 608
and/or SR-PCIM 620 implements a Translation Agent (TA),
which corresponds to a combination of hardware and soft
ware responsible for translating an address within a PCIe
transaction into the associated platform physical address. A
TA may contain an Address Translation Cache (ATC) to
accelerate translation table access. ATA may also Support the
PCI-SIG Address Translation Services Specification Which
enables a PCIe function to obtain address translations a priori
to DMA access to the associated memory.
0.134 Referring to FIG. 7, an example correspondence
between a configuration file 626 and an I/O configuration
space 617 is shown. In the example shown, an XML file
includes a plurality of device entries. The device entries each
are associated with a different I/O device having a separate
configuration memory space in the I/O configuration space
617. For example, a first entry, associated with a first I/O
device, may correspond to a first physical function configu
ration space for that same I/O device, while a second entry in
the XML file 626 may be associated with a second physical
function configuration space, and so on.
0135. As shown in FIG. 7, each of the device entries is
associated with an I/O device, and as such is associated with

US 2016/007,7847 A1

a device driver used by System Software to access and address
the device. The device entries of the XML file 626 includes a
status (e.g., active, inactive, error states), as well as a plurality
of defined mappings to virtual functions. Each of the plurality
of virtual functions can be assigned to different partitions and
can also have a status associated therewith. For example,
although a physical function may be active, a partition asso
ciated with one of the virtual functions may be in the process
of rebooting, so that virtual function may be inactive. Other
permutations on status of the physical and virtual functions
are possible as well.
0136. It is noted that, for each of the entries in the XML file
626, corresponding data is available in the I/O configuration
space 617 (also known as ECAM memory in some embodi
ments). In example embodiments, a configuration space for a
particular I/O device may include a device ID and vendor ID,
base address registers, expansion ROM addresses, a capabili
ties pointer, as well as an SR-IOV extended capabilities
space. The SR-IOV extended capabilities space can include,
for example, SR-IOV capabilities data, as veil as a status
memory area, control bits, stride/offset data, as well as virtual
function mappings via VFBAR memory areas that define a
mapping of (in this case) up to eight virtual functions for each
physical function. Details regarding the I/O configuration
space 617 are provided in the Single Root I/O Virtualization
and Sharing Specification, Revision 1.1, dated Jan. 20, 2010,
the contents of which were previously incorporated by refer
ence in their entirety.
0137 Referring now to FIG. 8, an example flowchart of a
method 800 by which an SR-IOV device can be instantiated
within a multi-partition framework Such as that shown in
connection with FIGS. 1-3 and 6 is provided. Aspects of the
method 800 can be performed, for example, by a virtualiza
tion system, such as an interconnect service partition and/or a
guest or I/O service partition, depending on the implementa
tion and intended mapping of virtual functions within the
multi-partition framework.
0.138. In the example shown, the method 800 includes a
physical function operation 802 that operates to store a physi
cal function driver in an interconnect service partition. The
physical function operation 802 can be performed by a SR
IOM in the interconnect service partition, and can include
loading of a physical function driver.
0.139. A guest partition initiation operation 804 includes a
BIOS loading process that is initiated in the guest partition
that will be associated with one of the virtual functions.
During this BIOS loading process, base address registers are
allocated during a partition boot, in operation 806. A parse
operation 808 can include the SR-IOM of the interconnect
service partition reading a file (e.g., XML file 626) defining
the configuration information that is provided in the I/O con
figuration space (e.g., I/O configuration space 617) to deter
mine mappings between the physical function and one or
more virtual functions (including a virtual function to be
mapped to the guest partition being booted.
0140 Based on the SR-PCIM determining that the parti
tion being booted is associated with one of the virtual func
tions for one or more devices the SR-IOM will perform an
activate operation 810 to activate the VFs for those guest
partitions by writing to the XML file 626, which is propagated
to the I/O configuration memory space by the trusted code
block 808. Accordingly, the guest partition or I/O service
partition can complete a boot operation 812, and boot into an
operating system, thereby loading the virtual function asso

Mar. 17, 2016

ciated with each device that is mapped for use by that partition
in the I/O configuration space and XML file. Based on that
loading process, the virtual function appears during the boot
operation and can be accessed by the operating system, which
views the virtual function equivalently to a physical I/O
device.
0141 Referring to FIG. 9, an example method 900 for
booting a guest or I/O service partition that is associated with
a virtual function is illustrated. The method 900 can be per
formed, for example, concurrently with operations 804-808
performed by the SR-PCIM in the interconnect service par
tition.
0142. In the example embodiment shown, the method 900
includes an initialization operation 902, which corresponds to
initialization of the partition that is to be associated with one
or more virtual functions. It is noted that, in example imple
mentations of the present disclosure. Such apartition to which
a virtual function is to be assigned may have a variety of
startup states. Such states can include, for example, an
Enabled State, an Active state, an Alive state, a ChannelsAS
signed State, a Processor Assigned State, a Memory Assigned
state, a Processors.Attached state, a ProcessorsScheduled
state a ChannelsAttached State, a Channels.Scheduled State, a
Memory Image, ChannelImage, and Processorimage states, a
Processors.Operating state, and a ChannelsOperating state,
each indicating different operative states of various compo
nents of the system. It is noted that, in Such cases, until
processors are attached and scheduled for execution, the par
tition cannot initiate execution of workloads. In the context of
the present disclosure, initialization can correspond to pre
paring the partition by assigning channels, processor(s), and
memory to the partition, but not yet attaching or scheduling
processors, thereby preventing initialization of operation
until the virtual functions and associated physical function
are verified as operational and associated with the partition.
0143. After the partition is initialized, it is determined
which virtual functions are to be associated with that parti
tion, in operation 904. This can result in a determination that
one or more virtual functions are to be associated with the
partition, thereby appearing as I/O devices to the operating
system hosted within that partition.
0144. The method determines whether a physical function
associated with the virtual function is in a ready state, based
on assessment operation 906. This can correspond, for
example, to an SR-PCIM within an interconnect service par
tition determining that, based on the contents of a file repre
senting an I/O configuration memory space (e.g., XML file
626), a physical function associated with each of the virtual
functions to be mapped to the partition to be initialized is
active (e.g., in a “ready’ state).
0145 If the physical function is not in a ready state, the
method 900 may enter a wait state 907 to allow the physical
function to entera ready state, for example in the case that the
interconnect service partition is concurrently being initialized
or the SR-PCIM had to re-initialize the physical function
recently. In example embodiments, the wait state 607 can be
accomplished by looping on an attaching processor State
(e.g., prior to ProcessorSAttached in the above set of States),
thereby preventing the guest partition that is to be allocated a
virtual function from running (since no processor is attached
and associated with that guest partition). After the wait state
907, a further assessment operation 908 determines whether
the physical function is in a ready state, based on a device
descriptor associated with that physical function. If, after

US 2016/007,7847 A1

waiting a predetermined amount of time, the physical func
tion is not in the ready state, one or more actions may be taken.
For example, in one example embodiment, the SR-PCIM in
the interconnect service partition may attempt to restart the
physical function or reinstate the physical function driver. In
another example embodiment, the interconnect service parti
tion can restart the SR-PCIM, which may result in a re
reading of the XML file, which may be updated based on
changed I/O configuration data (e.g., in the I/O configuration
space 617, such as ECAM memory). In a further example
embodiment, the interconnect service partition in which the
SR-PCIM and physical function driver can be restarted alto
gether, which will result in re-initialization of the physical
function, as well as reloading of the physical function driver
and SR-PCIM. This can include setting an Ultral DeviceDe
Scriptor for the physical function.
0146 If the physical function is in a ready state after the
wait state 907, or if the physical function is in a ready state
initially, the method continues to a processor attach operation
910, which attaches a processor to the partition, it is noted
that, although the physical function may be ready, the inter
connect service partition may still be booting through other
states (as noted above); however, the guest partition that is
loading a virtual function associated with the ready physical
function need not wait for the interconnect service partition to
complete booting before proceeding. Accordingly, by asso
ciating a processor with the partition that is being initialized,
the partition can initialize execution. Accordingly, an initiate
execution operation 912 initiates booting of the partition
through its BIOS and into its operating system, loading all
virtual functions that are verified as available and associated
with ready physical functions and physical function drivers.
0147 Referring generally to FIGS. 8-9 it is apparent from
these arrangements that, rather than taking an OS-specific
view of allocation and assignment of virtual functions to
partitions, the present disclosure contemplates managing
such features from the SR-PCIM and in a dedicated partition,
Such as the interconnect service partition as described. This
allows the presently described systems to allocate all virtual
functions and associated memory in the I/O configuration
space 617 prior to configuration of the virtual functions as
associated with partitions themselves. This allows for
dynamic addition or removal of virtual functions to/from the
XML file 626, and thereby allowing the SR-PCIM to dynami
cally change mappings of physical and virtual functions
within the virtualization system.
0148 FIGS. 10A-10B illustrate an example arrangement
by which a guest or I/O service partition can be initialized
within the context of the multi-partition environment 600 of
FIG. 6, for example using the methods and systems of FIGS.
8-9 described above. In the example shown, a physical func
tion driver 622 is loaded by SR-IOM 620, for example during
physical function operation 802 of FIG.8. Subsequent to the
physical function driver 622 being loaded and active, a guest
partition 604 or I/O service partition 606 (shown as guest
partition 604) is initialized, for example by initiating a BIOS
loading process as in operation 804 of FIG.8. Base address
registers are allocated, and a file (e.g., XML file 626) is parsed
to determine an association between a virtual function 624 to
be loaded by the partition being initialized and a physical
function and physical function driver 622 that is currently
associated with an I/O device 614.

0149. Once the correspondence between the virtual func
tion and physical function is determined (e.g., as performed in

Mar. 17, 2016

operation 904 of FIG. 9) and assuming that the physical
function is in the ready state, as shown in FIG.10B, the virtual
function driver 624 is activated within the guest partition 604,
and a processor 614 is attached to the guest partition, allowing
the guest partition to boot into the guest operating system 605.
(O150 Referring now to FIG. 11, a method 1100 of man
aging a physical function and single root PCI manager (SR
PCIM) in a partition of a multi-partition system is shown,
according to an example embodiment. The method 1100 can
be performed, for example, by an interconnect service parti
tion (e.g., partition 602) to manage a physical function and/or
SR-PCIM that manages physical functions associated with
I/O devices. In connection with method 1100, it is noted that
the physical function associated with a particular I/O device
need not be reset when a SR-PCIM is reset; as such, a guest
partition may still be able to function and use its associated
virtual functions despite the SR-PCIM being inoperable for at
least Some period of time.
0151. In the embodiment shown, the method 1100
includes a count operation 1102 that maintains a count of
active virtual functions for each physical function. The count
operation 1102 can correspond, for example to periodically
reading a file, such as XML file 626, defining each of the
SR-IOV device mappings, and which is maintained by the
trusted code block 608. The method 1100 determines whether
an SR-IOM reset is needed, at operation 1104. This can be for
a variety of reasons. For example, the SR-IOM may need to be
reset to re-load a different physical function driver, or in the
event of malfunction of either the SR-IOM or a physical
function driver associated with an I/O device managed by the
SR-IOM.

0152. If no reset is required, the method 1100 simply
returns to maintaining a count of active virtual functions for
each physical function in the count operation. However, if a
SR-PCIM reset is required, an active virtual function deter
mination operation 1106 determines whether any active vir
tual functions are associated with any of the physical func
tions managed by the SR-PCIM. If there are active virtual
functions that are associated with any of the physical func
tions being managed by the SR-PCIM, a reset operation 1108
can be performed in which the SR-PCIM is reset without
resetting the physical functions, or at least those physical
functions that are associated with active virtual functions as
determined in operation 1106.
0153. If it is determined that there are no active virtual
functions associated with any of the physical functions man
aged by the SR-PCIM, a reset operation 1110 is performed,
which resets each of the physical functions within the SR
PCIM as well as the SR-PCIM itself, while maintaining per
sisted configuration memory. In other words, in the case of the
arrangement 600 of FIG. 6, the SR-PCIM 620 and physical
functions maintained in the interconnect service partition 602
can be reset without causing the trusted code block 608 to
alter either the XML file 626 or to alter the I/O configuration
space 617 in memory 616. When restarted, an association
operation associates the maintained I/O configuration space
617 with the associated physical function.
0154 Referring to FIG. 11 generally, it is noted that, in
typical implementations of SR-IOV systems, because the
SR-PCIM is configured for direct access of ECAM memory
(e.g., the configuration space 617), in Such embodiments
resetting the SR-PCIM will cause release of the ECAM
memory, rather than preserving Such settings between physi
cal and virtual functions. Accordingly, a reset of a physical

US 2016/007,7847 A1

function may in Such cases require reset of each of the asso
ciated virtual functions. Furthermore, in typical implementa
tions, the physical function is reset when the SR-PCIM is
reset. According to the embodiments described herein, Such
resetting need not occur.
0155 Although the present disclosure and its advantages
have been described in detail, it should be understood that
various changes, Substitutions and alterations can be made
herein without departing from the spirit and scope of the
disclosure as defined by the appended claims. Moreover, the
Scope of the present application is not intended to be limited
to the particular embodiments of the process, machine, manu
facture, composition of matter, means, methods and steps
described in the specification. As one of ordinary skill in the
art will readily appreciate from the present invention, disclo
Sure, machines, manufacture, compositions of matter, means,
methods, or steps, presently existing or later to be developed
that perform substantially the same function or achieve sub
stantially the same result as the corresponding embodiments
described herein may be utilized according to the present
disclosure. Accordingly, the appended claims are intended to
include within their scope Such processes, machines, manu
facture, compositions of matter, means, methods, or steps.
0156 The above specification, examples and data provide
a complete description of the manufacture and use of the
composition of the invention. Since many embodiments of
the invention can be made without departing from the spirit
and scope of the invention, the invention resides in the claims
hereinafter appended.

1. A method of instantiating a virtual function in a partition
of a multi-partition virtualization system implemented at
least in part on a computing device, the method comprising:

initializing a partition on the computing device, including
determining a virtual function to be associated with the
partition, the virtual function associated with a physical
function of an I/O device;

prior to attaching a processor to the partition, determining
if the physical function is in a ready state and capable of
being associated with the virtual function; and

upon determining that the physical function is in the ready
state and capable of being associated with the virtual
function, attaching the processor to the partition, thereby
allowing the partition to begin execution.

2. The method of claim 1, further comprising, until deter
mining that the physical function is in the ready state, pre
venting the processor from being attached to the partition,
thereby preventing the partition from beginning execution.

3. The method of claim 1, wherein the partition comprises
a guest partition.

4. The method of claim 1, further comprising, upon deter
mining that the physical function is not in a ready state,
reinstantiating the physical function within an interconnect
service partition on the computing device.

5. The method of claim 4, wherein reinstantiating the
physical function comprises resetting the interconnect Ser
Vice partition.

6. The method of claim 4, wherein the interconnect service
partition completes initialization after the physical function is
in the ready state.

7. The method of claim 1, wherein the partition comprises
an I/O service partition that manages local data storage on the
computing System.

Mar. 17, 2016

8. The method of claim 1, wherein determining if the
physical function is in ready state comprises checking a
device descriptor of the physical function.

9. A system comprising:
a first partition implemented on a computing system

including a plurality of processors, memory, and at least
one I/O device having an associated physical function,
the physical function having a plurality of operational
states including a ready state;

a second partition implemented on the computing system,
the second partition capable of having at least one of the
plurality of processors associated therewith to initiate
execution of the second partition and having a virtual
function associated with the physical function;

wherein the system is configured to determine, prior to
associating the at least one of the plurality of processors
therewith, whether the physical function is in at least the
ready state;

wherein, if the physical function is not in at least the ready
state, the system prevents association of any of the plu
rality of processors with the second partition.

10. The system of claim 9, wherein preventing association
of any of the plurality of processor with the second partition
prevents operation of the second partition until the physical
function is in at least the ready state.

11. The system of claim 9, wherein the physical function
has a plurality of States including an enabled State, an active
state, an alive state, a channels assigned state, a processor
assigned State, a memory assigned State, a processors
attached State, a processors scheduled State, a channels
attached State, a channels scheduled State, a memory image
state, a channel image State, a processor image state, a pro
cessors operating state, and a channels operating State.

12. The system of claim 9, wherein the first partition com
prises an interconnect service partition, and the device com
prises a communication interface.

13. The system of claim 9, wherein the second partition
comprises a guest partition.

14. The system of claim 9, wherein the second partition
comprises an I/O service partition that manages local data
storage on the computing system.

15. The system of claim 9, wherein, if the physical function
is not in at least the ready state, the second partition waits in
a processors-attached State until the physical function is in a
ready state.

16. The system of claim 9, wherein, upon determining that
the physical function is in the ready state, the second partition
continues to boot into an operating system hosted within that
partition.

17. A computer readable storage medium having com
puter-executable instructions stored thereon, which, when
executed by a computing system, cause the computing system
to perform a method of instantiating a virtual function in a
partition of a multi-partition virtualization system imple
mented at least in part on a computing device, the method
comprising:

initializing a partition on the computing device, including
determining a virtual function to be associated with the
partition, the virtual function associated with a physical
function of an I/O device of the computing system;

prior to attaching a processor to the partition, determining
if the physical function is in at least a ready state;

US 2016/007,7847 A1
15

while the physical function is not in at least the ready state,
maintaining the partition in a processors attached State,
thereby preventing instantiation of an operating system
within the partition;

upon determining that the physical function is in at least the
ready state, attaching the processor to the partition,
thereby allowing the partition to begin execution.

18. The computer readable storage medium of claim 17,
wherein the physical function is managed within an intercon
nect service partition separate from the partition.

19. The computer readable storage medium of claim 18,
attaching the processor to the partition occurs prior to com
pleted instantiation of the interconnect service partition.

20. The computer readable storage medium of claim 17,
wherein the partition comprises at least one of a guest parti
tion or an I/O service partition.

k k k k k

Mar. 17, 2016

