
US006092077A

United States Patent [19] [11] Patent Number: 6,092,077
Ahmadi [45] Date of Patent: *Jul.18, 2000

[54] BINARY-ORIENTED SET SEQUENCING 5,133,070 7/1992 Barker 707/513
5,241,645 8/1993 Cimral et al. 39/500.23

[75] Inventor: Babak Ahmadi, West Vancouver, 5,418,942 5/1995 Krawchuk et al. 707/3
Canada 5,454,101 9/1995 Mackay et al. 707/100

5,463,774 10/1995 Jenness 707/10
v. oo e e 5,504,892 4/1996 Atsatt et al . 707/103

[73] Assignee: º º * Technologies, Ltd., 5,535,383 7/1996 Gower 707/103
ancOuVer, Canada 5,535,386 7/1996 Wang 707/203

- - - - - - 5,548,749 8/1996 Kroenke et al. . 707/102

[*] Notice: This patent is subject to a terminal dis- s'ssio’s : tº: . º - %
claimer. 5,684,985 11/1997 Ahmadi 707/100

- Primary Examiner—Thomas G. Black
[21] Appl. No.: 09/215,381 Assistant Examiner—Charles Rones
[22] Filed: Dec. 18, 1998 Attorney, Agent, or Firm—Merchant & Gould P.C.

57 ABSTRACT
Related U.S. Application Data [57]

- - - - - - A computer-implemented method and apparatus for infor

[63] º º i. º *i. ". mation organization, wherein atomic information can be
§ sº lsº."N."., ?º LOIn INO. both static and dynamic, but the compound information

(e.g., associations, groupings, sets, etc.) of such atoms
[51] Int. Cl." … G06F 17/30 always remain dynamic. Unless otherwise directed, a com
[52] U.S. Cl. 707/102; 707/100; 707/103 pound information entity is always dynamically determined
[58] Field of Search 707/100, 102, and generated. This determination is based on the processing

707/103 of a defined condition, wherein all atoms qualifying the
condition are included in the compound. This dynamic

[56] References Cited determination eliminates the need to “update” the
compound, when atoms and/or compounds common to two

U.S. PATENT DOCUMENTS or more compounds are changed. Further, each information
4,791,561 12/1988 Huber .. 707/1 compound can be dynamically generated based on an exist
4,805,099 2/1989 Huber 707/102 ing definition for that compound.
5,093,782 3/1992 Muraski et al. 707/104
5,129,083 7/1992 Cutler et al. 707/103 39 Claims, 26 Drawing Sheets

GLOBAL INFOFRAME
200

| ---
_^

| 2^ MODULE-1

| / 2O8—- EDHN-1

PROCESSABLE FORM

`s INFOBASE 202

> ||
EDP 2O6

PROCESSING N
ENDO- T-----_ DYNAMIC EDP PRocessing \ * |

º OOO rowser) |
&: <gº \ –

sº |

INFORMATION IN
PRESENTABLE AND/OR

U.S. Patent Jul.18, 2000 Sheet 1 of 26 6,092,077

FIG. 1
1 O2

6,092,077 Sheet 2 of 26 Jul.18, 2000 U.S. Patent

6,092,077 Sheet 3 of 26 Jul.18, 2000 U.S. Patent

NOLIVZINV5)?-O EXIT A-IO LOERHICI

E ‘WOLV OHNI RIO ||LINEAE CI ‘WOLV

OHNI (IO~------... . . .

LINEAE,‘‘ “ ---------__

9 ‘WOLV O-INI RIO LINEAE, £ ‘WOLV O=INI (IO LINEAE,

d?HSNOLIVIEN NOWWoo..”

6,092,077 Sheet 5 of 26 Jul.18, 2000 U.S. Patent

6,092,077 Sheet 6 of 26 Jul.18, 2000 U.S. Patent

I NEW EDS

U.S. Patent Jul.18, 2000 Sheet 7 of 26 6,092,077

Fig. 7A

i.:FT. C#.3 : 8 , ; 28: :

Fig. 7c

6,092,077 Sheet 9 of 26 Jul.18, 2000 U.S. Patent

U.S. Patent Jul.18, 2000 Sheet 10 of 26 6,092,077

FIG. IO
UNIVERSAL ENTITY IDENTIFIER (UEI)

SITE OWNER IDENTIFIER (SOI) 4 B

SITE ENTITY IDENTIFIER (SEI) 4B

DATA TYPE IDENTIFIER (DTI) 4 B

FIG. I |

FIG. I 3

6,092,077 Sheet 11 of 26 Jul.18, 2000 U.S. Patent

TTONT?nN |,

NOIIV/N|EWOO TV75) ETT|

ETT\//\TTON TTTTNETTVA ETTVAEITTIVA

Bonano?s
CINO81

=?nan?l?y|10EITEITAS

U.S. Patent Jul.18, 2000 Sheet 13 of 26 6,092,077

FIG. I5

3

2

2

2

1.

8

7

6

SPAWN

PARAMETER

2 USER/NATIVE

0 0 – 25 NOT USED YET

FIG. I6

BOND ORGANIZATION RECORD (BOR)

SELF BOND [UEI) 8B

RELATED BOND [UEI] 8B

FIG. 21

B

B

ETB CHECKSUM 4

ETB FILE ADDRESS 8

U.S. Patent Jul.18, 2000 Sheet 14 of 26 6,092,077

LOGICAL BOND
ORGANIZATIONS

CMND LINE-M PARAMETER-N XXX PARAMETER

CMND LINE-M t ACTIVE XXX BOND

FIG. 18

U.S. Patent

FIG. I.9
1902

Jul.18, 2000 Sheet 15 of 26

1904
/

6,092,077

SUBJECT ATTRIBUTE BOND sEd

FIG. 24

SOME BOND
SOME BOND
SOME BOND
SOME BOND
SOME BOND
SOME BOND
SOME BOND

N/A

STATEMENT
ABOUT "A"

STATEMENT
^ABOUT "B"

DiL-UEl PARAMETER-1 INFOBASE PARAMETER
DIL-UE! PARAMETER-2 INFOBASE PARAMETER
D|L-UE PARAMETER-3 INFOBASE PARAMETER
DiL-UEl INFOBASE-1 ACTIVATE INFOBASE
DIL-UEl INFOBASE-2 ACTIVATE INFOBASE
D|L-UE| PARAMETER-1 INFOBASE PARAMETER
DHL-UE! INFOBASE-3 ACTIVATE INFOBASE

U.S. Patent Jul.18, 2000 Sheet 16 of 26 6,092,077

; : -------------------...-------------------------…" EXº34.8 F33.3 $ºf £73}…~~~~-------------. F#3, 23 º ,
2006. -------------------------- ~! .*.*.*...

ExPaspasi is tasia cowposite ºrchiº ... 33.33
2

|
; :

*:::::::::::::::::::::::::::::::::$’3 £3: 3:33

U.S. Patent Jul.18, 2000 Sheet 17 of 26 6,092,077

FIG. 22

EXPANDABLE TABLE ARRAY HEADER (ETAH)

FLAGS 1.

SELF ETS [UET] 8

ETA SIZE (NUMBER OF ETR S) 4

B

B

B

B

B

ETA MEMORY ADDRESS 8B

FIG. 23

U.S. Patent Jul.18, 2000 Sheet 18 of 26 6,092,077

FIG. 25

INFOBASE DEFINITION RECORD (IBDR) (

FLAGS 4 B

SELF [UEI) 8B

IMAGE [UEI) 8B

FIG. 26

LAST GENERATION 4

EDS SIZE 4B

MEMORY ADDRESS 8 – 16B

FIG. 27

U.S. Patent Jul.18, 2000 Sheet 19 of 26 6,092,077

Fig. 28

<ºxA&# 883 tº >&, ?áiláš: “àº £33”, i.8 &4.3& £38W-8.
: <<-- - - - - §§§ {{`.3..........…...….-- 3.

Los Epsi, wº
à
\
* 2:332

6,092,077 Sheet 20 of 26 Jul.18, 2000 U.S. Patent

|

LOBSAHELNI SCJETAW (LTV) Z-SE?! 8:\/ INFETT GOWL Tans Œ-SEJ TXINA) INFETT GOWL

TETEGS TETEGS TETEGS__ TETEGST | En-EGS TETEGS |Elfl-EICIS | En-EdS__ DETEGST TETEGS |Elfl-EICIS

EICIS N\/
>JO-I CIELIV(HEINE|5) SCIE HO SLNE LNO3) 62 '91-'

U.S. Patent Jul.18, 2000 Sheet 21 of 26 6,092,077

FIG. 3O

FIG. 3]

PARAMETER DEFINITION RECORD (PDR)

B FLAGS 1.

DATA TYPE 4 B

DATA SIZE 4B

TYPE IMAGE [UEIJ 8B

B DEFAULT VALUE [UEI] 8

6,092,077 Sheet 22 of 26 2000 Jul. 18 U.S. Patent

6,092,077 Sheet 23 of 26 Jul.18, 2000 U.S. Patent

È !
V

U.S. Patent Jul.18, 2000 Sheet 26 of 26 6,092,077

FIG. 36
36O4 36O2

susject || AITRIBUTE | Bond Iseo.
OPERATOR PARAMETER a *

STRING | OPERATOR PARAMETER CODE LINE:L.1
"123" OPERATOR PARAMETER

GET_PARM | EXECUTE OPERATOR y
CCOPY TFILE OPERATOR PARAMETER !
CCOPY STRING | OPERATOR PARAMETER 3

"123" OPERATOR PARAMETER CODE LINE:L2

GET_PARM | EXECUTE OPERATOR w
CCOPY SDATE OPERATOR PARAMETER º
CCOPY DATE OPERATOR PARAMETER CODE LINE:L3
CCOPY "4" OPERATOR PARAMETER

ALLOC VAR | EXECUTE OPERATOR w
OPERATOR PARAMETER :

DATE OPERATOR PARAMETER CODE LINE:L4
CCOPY "4" OPERATOR PARAMETER

ALLOC_VAR EXECUTE OPERATOR *
SFILE OPERATOR PARAMETER &

SDATE OPERATOR PARAMETER CODE LINE:L5

GET_DATE | EXECUTE OPERATOR *
TFILE OPERATOR PARAMETER t

OPERATOR PARAMETER CODE LINE:L6

GET_DATE | EXECUTE OFERATOR w
SDATE OPERATOR PARAMETER t

OPERATOR PARAMETER CODE LINE:L7
"SKIP_IT" | OPERATOR PARAMETER

EXECUTE OPERATOR *

OPERATOR PARAMETER :
SFILE OPERATOR PARAMETER CODE LINE:L8

"SKIP_IT"
RETURN

EXECUTE OPERATOR
LINE LABEL

EXECUTE OPERATOR

——

y

t
CODE LINE.L9
w

6,092,077
1

BINARY-ORIENTED SET SEQUENCING

This application is a Continuation of application Ser. No.
08/924,706 now abandoned, filed Sep. 5, 1997, which is a
Continuation of application Ser. No. 08/356,878, filed Dec.
15, 1994 and now U.S. Pat. No. 5,684,985, which applica
tions are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention discloses a method and apparatus
for data organization, storage, retrieval and processing, that
eliminates locational, structural or associative limitations.

2. Description of Related Art
Currently, information organization is implemented using

many methodologies, which often serve different and dis
tinct purposes for different general kinds of information. If
the information is composed of specific facts, figures,
names, and relationships, then the current approach forces
each specific application to provide its own way of defining
and using records. The only process who can possibly know
what the information is, is the one application which creates/
maintains that kind of information. At the lower OS level,
data can be any type ELS far as a database or any other
application is concerned. So files and directories are used to
organize information, where physical and logical organiza
tions of information are one and the same.

To find qualified and desired information, a process must
first deal with files and directories. The process must incor
porate and reflect the physical directory and file hierarchy
into its logical information organization. Many current con
tainment shells such as WINDOWSTM and DESQVIEWTM,
attempt to provide a seamless gap between the OS and
applications, so that a process does not have to deal with OS
details. Aside from being unstable, such shells are still
constricted by containment. That is, the logical and physical
organizations of information become the same at some level.
That is the level at which logical expansions,
reorganizations, and further associations become impossible
for containment.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a computer
implemented method and apparatus for information
organization, wherein atomic information can be both static
and dynamic, but the compound information (e.g.,
associations, groupings, sets, etc.) of such atoms always
remain dynamic. Unless otherwise directed, a compound
information entity is always dynamically determined and
generated. This determination is based on the processing of
a defined condition, wherein all atoms qualifying the con
dition are included in the compound. This dynamic deter
mination eliminates the need to “update” the compound,
when atoms and/or compounds common to two or more
compounds are changed. Further, each information com
pound can be dynamically generated based on an existing
definition for that compound.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 is a block diagram that illustrates one possible
hardware environment for the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

2
FIG. 2 is a block diagram that illustrates the structure of

an InfoFrame according to the present invention;
FIG. 3 is a block diagram that illustrates the associations

present in a containment organization;
FIG. 4 is a block diagram that illustrates the binary

associations according to the present invention;
FIG. 5 is a block diagram that illustrates grouping in a

containment organization to achieve a combined topic;
FIG. 6 is a block diagram that illustrates grouping accord

ing to the present invention to achieve a combined topic;
FIGS. 7A-7E are a block diagram that illustrates a current

method of organization implemented according to the
present invention;

FIGS. 8A-8B are a block diagram that illustrates a
compound logical structure according to the present inven
tion;

FIG. 9 is a block diagram that illustrates associative
processing according to the present invention;

FIG. 10 is a block diagram illustrating the structure of the
Universal Entity Identifier (UEI) according to the present
invention;

FIG. 11 is a block diagram illustrating the structure of the
Endo-Dynamic Information Node (EDIN) according to the
present invention;

FIG. 12 is a block diagram that illustrates the valid
combinations of the EDIN fields in terms of value according
to the present invention;

FIG. 13 is a block diagram illustrating the structure of the
Bond Information Record (BIR) according to the present
invention;

FIG. 14 is a block diagram that illustrates the structure of
an InfoFrame according to the present invention;

FIG. 15 is a block diagram illustrating the structure of the
Bond Flags portion of the BIR according to the present
invention;

FIG. 16 is a block diagram illustrating the structure of the
Bond Organization Record (BOR) according to the present
invention;

FIG. 17 is a block diagram that illustrates logical bond
organizations according to the present invention;

FIG. 18 is a block diagram that illustrates the structure of
a command line according to the present invention;

FIG. 19 is a block diagram that illustrates the structure of
an Endo-Dynamic Information Statement according to the
present invention;

FIG. 20 is a block diagram that illustrates the structure of
an Expandable Table Set according to the present invention;

FIG. 21 is a block diagram illustrating the structure of the
Expandable Table Record (ETR) according to the present
invention;
FIG.22 is a block diagram illustrating the structure of the

Expandable Table Array Header (ETAH) according to the
present invention;

FIG. 23 is a block diagram illustrating the structure of the
InfoFrame Control Record (IFCR) according to the present
invention;

FIG. 24 is a block diagram that illustrates the structure of
an Activation List Example according to the present inven
tion;
FIG.25 is a block diagram illustrating the structure of the

Infobase Definition Record (IBDR) according to the present
invention;

FIG. 26 is a block diagram illustrating the structure of the
Set Definition Record (SDR) according to the present inven
tion;

6,092,077
3

FIG. 27 is a block diagram illustrating the structure of the
Module Definition Record (MDR) according to the present
invention;

FIG. 28 is a block diagram that illustrates the structure of
a Set Definition Equation according to the present invention;

FIG. 29 is a block diagram that illustrates the structure of
an Endo-Dynamic Set comprised of Set Definition Equa
tions according to the present invention;

FIG. 30 is a block diagram illustrating the structure of the
Operator Information Record (OIR) according to the present
invention;

FIG. 31 is a block diagram illustrating the structure of the
Parameter Definition Record (PDR) according to the present
invention;

FIG. 32 is a block diagram that illustrates flat storage
organization according to the present invention;

FIG. 33A-B is a block diagram that illustrates the struc
ture of an Endo-Dynamic Set hierarchical data tree accord
ing to the present invention;

FIG. 34 is a block diagram that illustrates the structure of
an Endo-Dynamic Set structure definition according to the
present invention;

FIG. 35 is a block diagram that illustrates the structure of
a program example according to the present invention;

FIG. 36 is a block diagram that illustrates the structure of
an Endo-Dynamic Set comprising an interpreted program
according to the present invention;

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference is made to the accompanying drawings which
form a part hereof, and in which is shown by way of
illustration a specific embodiment in which the invention
may be practiced. It is to be understood that other embodi
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.
OVERVIEW

Information can be generally described as either being
atomic or compound, where atomic information is an
elementary unit and compound information encompasses
any combination of atoms and other compounds to serve a
given purpose. The present invention, termed Binary Ori
ented Set Sequencing (BOSS), is; based on the concept that
the minimal common information structure for any body of
data is binary. This binary view of data organization
achieves an information management environment in which
any information of any complexity and type can be
represented, viewed, stored, and processed.
The present invention further adopts a view of informa

tion organization where atomic information can be both
static and dynamic, but the compound information (e.g.,
associations, groupings, sets, etc.) of such atoms always
remain dynamic. Unless otherwise directed, a compound
information entity is always dynamically determined and
generated. This determination is based on the processing of
a defined condition, wherein all atoms qualifying the con
dition are included in the compound. This dynamic deter
mination eliminates the need to “update” the compound,
when atoms and/or compounds common to two or more
compounds are changed. Further, each information com
pound can be dynamically generated based on an existing
definition for that compound.
The present invention differs in several ways from con

ventional information storage and processing environments.
These are listed below, and described in ensuing subsec
tions:

5

10

15

20

25

30

35

40

45

50

55

60

65

The InfoFrame

Binary Association
Universal Entity Identification
Dimensia
Associative Processing
As a result of these elements, an environment becomes

feasible, where the elements of logical organizations of all
data are stored as nodes. Further, processes are able to view
the same nodes in different ways. To be more precise, BOSS
can achieve any logical structure given the same basic set of
information atoms. This means data is maintained the same
way, regardless of the process manipulating it, and regard
less of the process's view of the involved data. Instead of
having to implement and store static single-purpose control
structures; and records, a process need only store a set
definition equation which results in a particular view of the
data. This promotes an environment in which a general pool
of nodes for all kinds of different data can be used as the
basis for dynamically generating different views for all the
different processes which use pieces of the collective data
pool in different ways.
HARDWARE ENVIRONMENT

FIG. 1 depicts the hardware architecture of the preferred
embodiment in accordance with the principles of the present
invention. Generally, the present invention operates in a
network environment 100 having a decentralized hardware
architecture, including one or more servers 102, and a
plurality of user workstations 104, all coupled together
through the network 106. In the preferred embodiment, the
network 106 is depicted as having a ring topology. Those
skilled in the art will be able to bring to mind other known
network topologies such as, but not limited to, a star or a bus
configuration. Typically, the server 102 will include a data
base 108, although the workstations 104 themselves could
store all or a part of a database 108.
THE INFOFRAME
The present invention provides for the existence of a

global (universal) Information Frame (InfoFrame), where all
types of systems (InfoPases) which include various pro
grams and databases (modules), and various data structures
and data values (views and nodes) can co-exist in the
InfoFrame, and data can be created, modified, organized,
shared and exchanged on a dynamic basis. Data exchange
across the InfoFrame is trivial, no matter what the system
type. This makes all the processing of data import/export
and usage across the InfoFrame invisible to all client pro
CèSS?S.

FIG. 2 is a block diagram that illustrates the structure of
an InfoFrame 200 according to the present invention. The
present invention orders all information in the following
Imall?ler.

Information Frame (InfoFrame) 200, which is the overall
grouping of all information.

Information Base (InfoPase) 202, which is a set of
information modules and other control information that
provides a self-contained set of consistent modules
which provide for needs of a BOSS client.

Endo-Dynamic Information Node (EDIN) 204, which is a
binary association of two information atoms, Subject
and Attribute, as well as a Bond that binds them.

Endo-Dynamic Set (EDS) 206, which is a dynamically
generated, possibly ordered, list of EDINs 204 that
describes, depicts, or embodies a subject, attribute, or
bond.

Information Module (IM) 208, which is a set of EDS's
206 and other control information that provides a

6,092,077
5

self-contained set of consistent EDS 206 which provide
for needs of a BOSS client.

An EDS 206 may contain any number of EDINs 204 or
be empty. The contents of an EDS 206 are dictated by a
condition for that EDS 206, wherein the condition is pro
vided by a Set Definition Equation (SDE). The more com
plex the SDE, the more particular data and/or data relation
ships are required to satisfy membership in the resultant
EDS 206. However, SDE complexity does not directly effect
the size of a resultant EDS 206. The size of a resultant EDS
206 simply depends on the number of EDINs 204 which
satisfy the associated SDE. This size depends on the kinds
of data being organized, and how frequently instances of that
kind of data occur.

All EDS's 206 are dynamically generated using one or
more modules as the source of generation. A module 208 is
primarily a set of EDINs 204 with no particular order.
Modules 208 can then be included in one or more InfoPases.
Each InfoFlase 202 provides evolved information access,
searching, and processing, by including as many modules as
required to account for all data and processes. The InfoF
rame 200 is the totality of all InfoPases 202 and is the largest
possible data space. Every individual computer or network
has its own InfoFrame 200. When two or more computers or
networks are connected such that data exchange is possible,
the InfoFrame 200 has simply become larger. In this sense,
there is only one InfoFrame 200 on a global basis, and it is
just a matter of what portion of the InfoFrame 200 a user is
connected to or has access to.
An EDS 206 differs from a set, as that term is understood

in the art, in several important ways. First, an EDS 206 can
have a heterogeneous meaning. That is, an EDS 206 can
contain any number of different meanings, data or represen
tations.

Second, an EDS 206 does not have to conform to the
concept of containment. Containment is where an element
“X” physically exists or is “contained” within set “Y”. In a
non-containment environment, there is no predefined mean
ing between “X” and “Y”, just because one contains the
other. In set methodology, the only meaning that can be
derived is that “X” is contained by “Y”. In the present
invention, “X” and “Y” can have any number of relation
ships defined directly in EDINs 204 or streams of related
EDINS 204.

Third, it is possible to execute expressions to modify an
EDS 206 or create a new EDS 206 in terms of a meaningful
formula. This formula is based on operators which can affect
EDINs 204 or EDS's 206 in a number of different ways. In
contrast, set-based mechanisms are based on adding or
extracting the meaning of the set by adding or extracting
elements from zero or more sets.

Since, by default, all modules are accessible across the
InfoFrame 200, each added module increases the possibili
ties for different and new InfoPases 202 by a substantially
large number. Clearly, this increase is non-linearly propor
tional to the number of modules 208. Formula Abelow gives
the number of unique possibilities, where “n” is the number
of modules 208. Formula B gives the absolute increase in
unique possible combinations of modules 208, when one
module 208 is added. Formula C gives the real number of
increased possibilities, by assuming that % of all such
unique possibilities have no meaning and serve no purpose
in reality. Table I shows the calculated numbers based on
different module 208 numbers.

10

15

20

25

30

35

40

45

50

55

60

65

6
wherein the operator indicates a factorial operation. As
can be seen, this is slightly less than “nxn”.

... 22

TABLE I

NUMBER
OF TOTAL REAL INCREASE IN
MODULES POSSIBILITIES POSSIBILITIES

1 0.25
2 0.50 0.25
5 30 30
10 907,200 907,170
100 2e-H157 2e-H157

The ease of integration and data sharing, combined with
the rapid increase in potential new InfoPases, provides an
environment where, as more data is added and as more
processing takes place, the environment as whole becomes
more stable and capable. Further, using automation and
chaining for all levels of the InfoFrame 200 (including the
InfoFrame 200), clients can tie together InfoPases 202 in
particular ways, such that automatic activities take place,
these activities including the monitoring, retrieval, storage,
and determination of:

Entity value;
Entity organization;
InfoPase 202 chaining and the determination of chains;
Module 208 chaining and the determination of chains; and
InfoFrame 200 native processes and settings.
Given a defined InfoFrame 200, client processes can use

BOSS operators as to manipulate part or all of the InfoFrame
200 in variety of ways to display, modify, process, search,
etc., the information. A BOSS client always calls the Endo
Dynamic Processor (EDP), passing it a list of operators (and
their parameters). The EDP is a software Command Proces
sor (CP), which accepts an operations list as input and
executes each line in the order specified by the operations
list. Note that the operations list is an EDS itself, providing
for variable number of parameters for the operators. In a
pure BOSS environment, a top-level operation list
(program) would be executed at power-on. This program is
an infinite loop where exit is possible by satisfying monitor
processes, and where each required InfoPase is located,
verified, and initiated. In a multi-tasking environment (e.g.,
Windows), linear module chaining and InfoPase chaining is
possible. In a multi-processing environment (e.g., Windows
NT), real-time (and therefore non-linear) InfoPase chaining
and module chaining is possible.

In a multi-site (computer) environment, each site executes
operations lists via its own EDP and accepts remote opera
tions lists as well. Since a Universal Entity Identifier (UEI)
identifies the site from which data originates (i.e., is located
on), remotely located data is potentially slower, but is
handled via EDP-to-EDP communication and data transfer
that is invisible to the client. Therefore, it is possible for one
site to initiate a process that will execute via the EDP of
another site, thereby leaving the original site free to perform
further immediate processing.
BINARY ASSOCIATION

In a logical information organization, an atom of infor
mation can be a logical representation for a topic, event,
process, or entity which can exist, be identified, and requires
processing. A logical organization exists when the informa
tion atoms are associated in different ways to produce a
structure. In current information organization
methodologies, the only kind of association between two
atoms of information is containment. This is true no matter

6,092,077
7

how evolved the containment method may be. For example,
in object-oriented programming methods, objects can have
associated predefined processes, where this is accomplished
by the object containing the processes or references to those
processes.

Current methods maintain child-lists for each parent to
record logical organization. A child is only recognized as
having an association if it is a parent itself.

FIG. 3 is a block diagram that illustrates the associations
present in a containment organization. In FIG. 3, the atoms
shown on the right, identified as B 304, C 306, D 308, and
E 310, are the children of A302. The containment approach
is to store the atoms (or identifiers to atoms) B 304, C 306,
D 308, and E310 in the logical control record for A302. For
example, a directory in DOS or UNIX is simply a file
containing a list of that directory’s contents.

Unlike a conventional set-element, the EDIN provides
two atoms (or identifiers of atoms): a Subject and an
Attribute. Each of the atoms given by an EDIN is an
information atom in the sense described above. The
Attribute provides additional association, enhancement or
qualification to a given Subject atom. As a result, an EDIN
contains a binary-association within itself. The EDIN is an
independent entity, capable of existing in any EDS whose
condition (SDE) can be met. The Subject and Attribute
atoms can be used in various ways to express any number of
different associations. As a result, an EDS (a set of EDINs)
can contain any number of singular relationships to describe
a more general association.

FIG. 4 is a block diagram that illustrates the binary
associations according to the present invention. FIG. 4
shows four EDINs with a Subject of A 402 and Attributes B
404, C 406, D 408, and E 410. The condition for this EDS
is simply that the Subject of each EDIN must be A402. Each
EDIN provides a relation, but all EDINs together describe
the same tree as shown in FIG. 3. In this way, a collection
of EDINs provide binary-associations between Subject atom
A 402 and the various Attributes 404–410.

Note that it is equally possible to dynamically generate
another EDS where the condition (SDE) is that the Attribute
must be B 404. This EDS would describe all atoms which
have the Subject in a relation with B 404. Yet another SDE
could produce an EDS where all Subjects are A 402 and all
Attributes are B 404. This EDS would describe all the
possible associations of A 402 and B 404.

Containment methods also experience problems when
two existing information organizations need to be combined.
FIG. 5 is a block diagram that illustrates grouping in a
containment organization to achieve a combined topic. The
two existing organizations under A 502 and B 504 are
combined to produce a combined organization 506. No new
associations are produced, the associations of A 502 and B
504 remain unchanged. Containment methods have no way
of actually integrating the two organizations because iden
tification of atoms is based on location. Consider the atom
D 506 under topic A502. This atom also occurs under topic
B 504. In the resultant combined organization, atom D 506
is duplicated, since the location of the two were different
prior to combining the organizations. This is actually not
good as the duplicate atom in the new organization will
confuse existing processes which access atom D 506. As a
result, combing two logical containment organizations is
often manual and always time consuming. Using BOSS, the
same two organizations can be combined without the prob
lems common among containment approaches.

FIG. 6 is a block diagram that illustrates grouping accord
ing to the present invention to achieve a combined topic.

10

15

20

25

30

35

40

45

50

55

60

65

8
FIG. 6 shows an EDS format of the same topics A 602 and
B 604 as in FIG. 5. Again, atom D occurs both under topics
A 602 and B 604 prior to the merge. The combined topic 606
simply contains all EDINs of both topics, where the condi
tion for the EDS is that the EDIN Subject must be either A
602 or EB 604. The atom D occurs as the Attribute of two
EDINs, but is not duplicated. That is, both EDIN Attributes
identify the same exact information atom.

In this way, BOSS is independent of the location of
information atoms in an organization. In other words, BOSS
achieves a complete separation of physical and logical
locations of data. Note that this is only possible because of
the endo-binary nature of the EDIN, the derived binary
association in an EDS, and universally unique data identi
fication and location.
UNIVERSAL ENTITY IDENTIFICATION
The next cornerstone of BOSS is the universally unique

identification and location of items. In BOSS, each set and
each element is uniquely identifiable via a Universal Entity
Identifier (UEI). This means that any topic/object can be
uniquely identified, under all conditions. If this were not true
and a containment-based approach were used, BOSS could
be inadvertently rendered impotent because the Subject and
Attributes of an EDIN could be ambiguous. The ambiguity
is introduced because if an item (Subject or Attribute of an
EDIN) cannot be uniquely identified, it cannot be uniquely
or correctly associated with other items.
DIMENSIA
The next element of BOSS is called “Dimensia”. Dimen

sia loosely refers to contexts or levels of abstraction that a
method for information organization is able to achieve at
both atomic and non-atomic levels. Most current systems
use flat or static multi-level methods for information orga
nization. A flat method or structure employs one level of
abstraction. A static multi-level method provides a maxi
mum of N predefined levels of abstraction.

In all current methods, an information atom qualifies
and/or describes itself. For example, an object in an object
oriented programming system may contain the atomic
element’s 32 bit number, string, and date. While describing
itself, the singular atom does not immediately provide a
relationship to any other entities. For example, an atomic
date object element simply tells you that fact; it does not
provide you with any relationships it may have to any other
entities. It is the object containing the elements which is
known to have relationships with each atom. By further
including object deriving procedures in an object, one or
more atoms may be related to other entities, but only the
object driver knows this fact, and the identity of the asso
ciated entities. So even in evolved containment methods,
only a limited set of the data relationships are given by the
data itself; the rest is process dependant.

FIGS. 7A, 7B, 7C, 7D, and 7E are block diagrams that
illustrate a current method of organization, e.g., a binary tree
702. To have this logical structure, the organization can be
of two general types. It can be an array 704 where tree
traversal is performed via mathematically calculated
indexes, based on current index. Or it can be a set of records
706 with left and right pointers. In either case, an inflexible
control structure is used to achieve logical organization.
These structures are inflexible because they are static in
nature. For example, should the order of the elements in the
array 704 change, a different tree (if one is decipherable at
all) is now represented. The record example 706 is free of
this problem, but the control record is particular and can
only be used for binary trees and linked lists.

In BOSS, each EDIN contains a Bond between a Subject
and an Attribute. As described above and shown by FIG. 3

6,092,077
9

and FIG.4, an EDS 708 can represent a tree by collecting all
EDINs with the same Subject. However, to implement all
levels in a tree, Attribute atoms in EDINs occur as Subject
atoms in other EDINs. In FIGS. 7A-7E, to record the
example binary tree 702, an EDS 708 records enough EDINs
to relate all required associations. Note that to discern left
and right children, the Bond specified in the EDIN can be
used. Note that since an EDS is dynamically generated,
insertions and deletions to/from a weighted tree 710 are
trivial as shown in FIG. 7E, and do not involve complex left
or right sub tree rotation.

In general, by duplicating the EDIN (i.e., twice the control
data) with same Subject and different Attributes, two or
more relationships of the same Subject atom and various
Attribute entities can be established. In each case, the
particular relationship is identified. In this way, all the
different relationships an atom has to one other entity, as
well as expressing all the different entities with which that
atom has a relationship, can be expressed. Therefore, using
BOSS methodology, the maximum number of possible indi
vidually defined relationships of one entity with others is
infinite and is only constrained by the amount of available
storage space. This is a major aspect of Dimensia.
When complex and/or compound logical organizations of

data are used, current methodologies are also forced to
employ (and implement) complex and/or compound pro
cesses to traverse the organization. Consider the case shown
in FIGS. 8A and 8B, which are block diagrams that illustrate
a compound logical structure according to the present inven
tion. In FIGS. 8A-8B, each atom of the example binary tree
702 of FIGS. 7A–7E is also an element in a distinct and
separate two-dimensional array 802. Using current
methodologies, new structures must be introduced, i.e., eight
two-dimensional arrays of DATA IDENTIFIER. The DATA
IDENTIFIER values of atoms “A” to “H” would then be
stored in appropriate locations in one of arrays, A1 to A8.
Now the program dealing with the data must not only
include processes for the old binary-tree record 706, but also
include processes to manipulate the arrays.
To implement the example compound organization 802

using BOSS, new EDINs are introduced, not new structures
or processes. FIGS. 8A and 89 illustrate a simple (and
inefficient) two-dimensional array implementation, where
the EDINs are sequenced based on a value calculated from
two-dimensional values. The EDS 804 actually encom
passes all the arrays, where sequenced subsets of EDINs
represent two-dimensional arrays. In each EDIN subset, the
atom which coexists in the binary tree 802 is shown; this
atom would occur in the sequence resulted from its array
coordinates. Each such EDIN set is not a two dimensional
array in the actual sense, and is very sparse. Again, the
dynamic nature of an EDS, means that the EDS is sequenced
upon generation.

Note that the additional EDINs 804 to represent the arrays
could be stored together with the EDINs for the binary tree
708 of FIGS. 7A-7E in a module. Upon loading the module,
and depending on the Set Definition Equation (SDE) used,
one or the other of the EDS's can be produced. In this way,
Dimensia is made possible for information, where no new
processes or control structures are required, and only new
SDEs and EDINs are introduced and processed (as per
before) to produce different and currently incompatible
views of the same atoms of data.
ASSOCIATIVE PROCESSING

The next cornerstone of BOSS is associative processing.
As mentioned above, a Bond in a given EDIN identifies a
native BOSS process associated with the Attribute of that

10

15

20

25

30

35

40

45

50

55

60

65

10
EDIN, and possibly involving the Subject of that EDIN. In
a BOSS environment, it is possible to automatically estab
lish and execute new associated processes, based on a given
information set. As a simple example, consider the two
EDINs given as 902 in FIG. 9, which is a block diagram that
illustrates associative processing according to the present
invention. Based on these EDINs, the BOSS process is able
to automatically derive and store the third EDIN 904. From
then on, the item “X” has direct relationships with both “Y”
and “Z”. Note that the derived EDIN 904 can only be
assumed to be correct when the relation is transitive in
nature (i.e., X BOND Y=Y BOND X). For example, the
“brother of relationship is transitive, while “father of is
not. Aside from simple association, BOSS can derive asso
ciations whose correctness is not absolute. Consider the
EDINs given as 906 in FIG. 9. Possible automatic deriva
tions are shown as the EDINs 908. Such proposed EDINs
can then be automatically checked for correctness by gath
ering all data about “A” and “C” and then performing an
exhaustive cross check to establish one of the following
general results:
Not enough data
The correct and incorrect EDIN(s)
Since EDINs with any contents and purpose can coexist

in a given module, it is possible to automatically derive new
relationships and associated processing and store such new
information in the same module, thereby expanding the
InfoFrame of BOSS on an automatic and dynamic basis.
HARDWARE EVOLUTION
The principles of BOSS outlined thus far are hardware

compatible concepts. It is possible to reduce the vast major
ity of BOSS operators directly into hardware. Indeed, most
of the BOSS operators and the Endo-Dynamic Processor
have been designed such that they can be converted (or
evolved into) hardware.

This simple fact renders BOSS one of the most powerful
data organization approaches in existence. Besides being
able to operate two to three orders of magnitude faster than
conventional data organization approaches when imple
mented in hardware, BOSS is infinitely more flexible.

Based on the evolution of hardware devices, the demand
for order of magnitude solutions is greater than ever. Further,
the existing approaches to solving the increasingly complex
data organization, migration and integration issues are being
limited by the engines used.
The BOSS methodology also promises interesting

advances in CPU design. Consider that a UEI can also be a
machine code mnemonic. A natural result of this fact is that
the data of an EDIN can also be a program, under the correct
circumstances. Further, it is possible to also create process
ing actions based on the binary relation found in an EDIN.
COMPONENTS

Unless specified otherwise, when any component or list is
stored to file, a number of operations occur. First, a check
sum of the component is calculated. Next, the checksum,
followed by a size (or number of records) is stored at top of
file. Finally, the component is saved. Loading performs the
reverse actions.
UNIVERSAL ENTITY IDENTIFIER (UEI)

FIG. 10 is a block diagram that illustrates the structure of
a Universal Entity Identifier (UEI), which is the heart of
information location and identification in BOSS methodol
ogy. A UEI contains two fields to provide a universally
unique location for a physical body of data. These are the
Site Owner Identifier (SOI) and the Site Entity Identifier
(SEI). The SOI is the serial number of the EDP operating at
a given site or some other unique identifier for an EDP. The

6,092,077
11

SEI is a unique incremental number per site, where the SEI
is assigned and incremented each time a new data entity is
created. An SOI and SEI together are called a Combined
Data Identifier (CDI). A CDI combines the duties of iden
tification and physical location into a single entity. This is
contrary to many current methods, where location is derived
or is cross-referenced based on a given identifier.
ENDO-DYNAMIC INFORMATION NODE (EDIN)

FIG. 11 is a block diagram that illustrates the structure of
an Endo-Dynamic Information Node (EDIN), which com
prises the elements in an EDS. The EDIN is the most atomic
form of stored BOSS information. An EDIN is composed of
four fields, i.e., a Subject UEI, an Attribute UEI, a Bond
UEI, and a Sequence field. The Subject, Attribute, and Bond
UEIs can occur in other EDINs and in other fields. For
example, an Attribute UEI can be a Subject or Bond UEI in
another EDIN. The Sequence field is used to enforce a
predefined order for the EDINs in an EDS.
EDIN COMBINATIONAL BEHAVIOR

FIG. 12 is a block diagram that illustrates the valid
combinations 1202 of the EDIN fields in terms of value, i.e.,
non-null, null, and “any” (i.e., could be either null or a valid
value) according to the present invention. Since any field in
an EDIN can contain a null value, it is prudent to specify the
exact set of possible combinations and their meanings.
The first and most common combination is for all valid

EDINs which are simply elements in a set.
The second combination is used when an item of infor

mation is “nullified” (see below). This has the effect of
making the Attribute item inaccessible in all non-edit BOSS
processes.

The last two combinations are shown for completeness.
These combinations, and all others not shown by FIG. 12,
are illegal and invalid occurrences of EDINs.
NULLIFIED EDINS
As shown in FIG. 12, if the Attribute of an EDIN has a

null value, it is called a Nullified Subject Node (NSN),
where the Subject of a NSN is the item being nullified. When
a NSN is created, all EDINs with the same Subject and all
the EDINs with the same Attribute UEI, as the NSN subject,
are now prohibited from being including on all subsequent
EDS generations. This has the effect of hiding information,
or hiding a particular section in an organization. To remove
a nullification (un-nullify), the NSN is simply removed from
a module. Now, all previously invisible items or hierarchy
branches are made visible again.

The NSN is strictly optional and it’s presence or absence
does not invalidate or limit the working of BOSS method
ology. If used, NSNs can augment BOSS with an informa
tion hiding capability.
BOND

The third EDIN field is a Bond UEI value. This ensures
that Bonds are universally unique. A Bond value identifies a
process where processing occurs based on an interpretation
of the EDIN Attribute field; these include a noun, verb,
adjective, adverb, action, action-sequence, etc. In all cases,
the Bond is known to be between the Subject and the
Attribute.

FIG. 13 is a block diagram that illustrates the structure of
a Bond Information Record (BIR), which records Bond
information. A BIR has three fields. The first is a Bond to
provide a key in the Bond Information Table (BIT). The BIT
is a list of BIRs sorted by the Bond field. As shown in FIG.
14, the BIT is stored at the InfoFrame level. The second field
of the BIR is a flag to describe the basic properties of the
Bond. The last field of the BIR is UEI which identifies the
associated process to be executed (by the EDP). This is most

10

15

20

25

30

35

40

45

50

55

60

65

12
often an EDO, but can also be a major subsystem of the EDP
which handles this and other similar bonds or a BOSS
program. The images and any default values for bonds are
stored in the IMAGE-ETS and DATA-ETS at the InfoFrame
level.
As shown in FIG. 15, the Bond Flags field in the BIR

gives the properties of the Bond, as follows:
Active/Passive

Active Bonds institute immediate processing and inter
rupt the active process flow until they are terminated.
Passive Bonds are relations which make a statement of
fact or existence; they do not instigate immediate
processing, but are used in the various BOSS processes
to generate and process EDS’s.

Operator
This flag indicates that the Bond is an EDO. Although

redundant, EDOs are also Bonds recorded twice. The
UEI for the EDO Bond is identical to the EDO UEI
given for that EDO in the Operator IT (forces active as
flag enable).

Call

This flag indicates that the Bond is a BOSS process
including a SDE, BOSS program, EDP command list
(forces active as flag enable). When this flag is off, the
associated process is assumed to be an OS binary
program.

Spawn
This flag indicates that a non-BOSS process is to spawn

concurrently or multitask (forces active as flag enable
and call flag disable).

User/Native
This flag indicates whether the Bond is a native Bond as

supplied by the EDP, or a Bond created by other person
or process. Whenever a Bond is created, this flag is set
to User, since any native Bonds would be supplied by
the EDP or shipped as upgrades.

In order for Bonds to make sense to a user, not only do
they have to have names, but also some form of organiza
tion. The names/images for all Bonds are stored in the
IMAGE-ETS, using the Bonds as the search key.

In order to provide organization, the Bond Organizational
Record (BOR) is used. A minimal form of the BOR is shown
in FIG. 16. This BOR contains only two fields, a SELF and
a RELATED Bond. Using this simple record, almost any
logical organization of Bonds can be achieved.
As shown in FIG. 17, anything from a multi-level tree

1702 to a simple list 1704 is possible. Depending on the
running process, different logical structures can be adopted.
A Bond value should always occur in the Bond EDIN

field. Consider a bond UEI which is recorded as a subject or
attribute of an EDIN, with some other Bond value in the
EDIN bond field. When this EDIN is processed, the bond
recorded as subject or attribute will behave as a subject or an
attribute, and not as bond. This can cause errors in EDP
processes and clients which require and recognize the
subjected/attributed bond for their critical processing.
ENDO-DYNAMIC SET (EDS)
Any dynamically generated or simply loaded list of

EDINs is an Endo-Dynamic Set (EDS). An EDS always has
a particular purpose and meaning, as known only to the
process using the data. For example, an EDS generated from
a program module could be a program data structure, a
program data occurrence, or a procedure occurrence. The
EDINs in the EDS also may be or may not be ordered,
depending on the requirements of the data being represented
by the EDS as a whole.

6,092,077
13

EDS's are identified by UEIs, but for the most part, this
is done indirectly and not in the same manner as other
entities. The UEI associated with most EDS’s is actually the
identifier for a Set Definition Equation (SDE). Given any
module, the SDE can be used to (re)produce an EDS with the
same exact membership conditions and potentially different
elements. Instead of storing the distinct EDS’s present in a
module, only the equations (SDEs) need be stored. This is
required to ensure EDS's generated via SDEs remain
dynamic at all times, and is somewhat smaller since set
elements need not be duplicated. Since an SDE is itself
implemented as an EDS, it is necessary to store the SDE
EDS in the same module.
BASIC EDIN SEQUENCES

Information can be generally categorized as being active
or passive. In this view, EDIN sequencing in an EDS takes
one of two basic forms: active sequence and passive
sequence. An active sequence is always an executable pro
cess of some form; a passive sequence always expresses the
structure, existence, qualities, properties, values, etc., of
some information. Put differently, an active sequence per
forms some activity, while a passive sequence provides data
about some information. Further, BOSS methodology
allows for any combination and number of occurrences of
both kinds of EDIN sequencing in the same EDS. However,
this would involve overhead processing, and the availability
of a client program to process the passive sequences. Some
passive sequences have associated native processes which
handle or drive those particular kinds of passive information
required for BOSS operations. In both cases, the EDIN
sequence field is used to establish the EDIN order. For active
sequences, the EDIN sequence value starts from zero and
goes up to the number of required EDINs, where an EDIN
sequence value is never duplicated in an active sequence.
For passive processes, the EDIN sequence may or may not
be required, depending on the information being represented
by the passive sequence. For example, if the passive infor
mation comprises files maintained hierarchically in
directories, which exist in volumes, the sequence field is not
required. However, if the passive information is a data
structure definition, with elements in some depth, the
sequence fields are used to order the elements of the struc
ture. The only EDIN sequence value which can be dupli
cated in a passive sequence is a “null” value.
To express an active sequence, one or more Endo

Dynamic Command Lines (EDCL) are used, where the
order of the EDCLs, as established by the EDIN sequence
fields, embodies the required active sequence. To express a
passive sequence, one or more Endo-Dynamic Information
Statements (EDIS) are used, where the EDINs may or may
not be ordered by the EDIN sequence field.
ENDO-DYNAMIC COMMAND LINE (EDCL)
The BOSS central process, the EDP, takes command lines

as input. An Endo-Dynamic Command Line (EDCL) is
dynamic in nature, and variable length. The basic EDCL
1802 is shown in FIG. 18. First, any number of EDINs bond
any number of parameters to a subject identification, the
subject being an EDCL 1802. Then, an EDIN bonds the
EDCL 1802 (same subject) to an executable entity, shown as
“XXX”. The EDINs are ordered by the sequence field to
place parameters before the execution occurrence. The
executable entity XXX could be an endo-dynamic operator,
a BOSS process (including SDE, BOSS program, activation
list, etc.), or an OS executable program.
EDOs form the “instruction” set available from the EDCL

1802. EDO EDCLs 1802 are the fastest to execute, and
require the least amount of overhead processing. A BOSS

10

15

20

25

30

35

40

45

50

55

60

65

14
process is any ordered list of EDCLs. This could be an SDE,
a BOSS interpreted program, an activation list for an Info
Base or InfoFrame, etc. An OS executable program is
externally executed and requires the most amount of over
head processing.
The EDCL 1802 differs from conventional command

lines in several ways. Clearly, the EDCL 1802 is variable
length in that any number of parameters are possible. The
EDCL 1802 is also dynamic, in that parameter and execute
EDINs (all EDINs for an EDCL 1802) can be changed
dynamically, and the EDCL re-executed. Note that the
EDCL 1802 trigger for the EDP is the Bond field of the
EDINs, not the subject or attribute fields. This is an impor
tant aspect of BOSS methodology. Using the Bond as a
trigger means that, in EDCL 1802 processing, information
subjects and attributes can occur freely and without affecting
the process flow.
The EDCL 1802 forms the basis of BOSS processing.

Using combinations of EDCLs 1802, any process what so
ever, using any kind and number of parameters, can be
accurately recorded and executed. Using the generic EDCL
1802 enables all BOSS clients to dynamically create and
modify any kind of EDCL group, and then have it executed
and re-executed by the EDP. As should be obvious, the
EDCL 1802 provides a simple and powerful way of
implementing, maintaining and executing genetic algo
rithms. Many of the EDP initialization, and default infor
mation processes, are expressed and stored as an ordered list
of EDCLs 1802. Any ordered list of EDCLs 1802 is referred
to as an Endo-Dynamic Command Set (EDCS) 1804.
ENDO-DYNAMIC INFORMATION STATEMENT (EDIS)
An Endo-Dynamic Information Statement (EDIS) is two

or more EDINs which make a statement of fact about some
subject. The basic EDIS 1902 is shown in FIG. 19. In this
figure, several attributes are bonded (possibly via different
bonds) to the same subject “A”. When order and hierarchy
are required for the information, an EDIN attribute UEI
(shown as “B”) occurs as the subject of other EDINs, whose
attributes further describe the UEI (i.e., “B”) originally
occurring as an attribute of a subject.

This is an important aspect of BOSS methodology. The
interchangability of the subject and attribute UEIs means
that any depth and breadth of information hierarchy can be
achieved. Further, upward or backward links can be intro
duced into the information hierarchy, such that a workable
information network/graph is achieved.
The EDIS 1902 is dynamic in nature, so that the expressed

passive sequence is a dynamically established one. Since
EDINs can be freely inserted into an EDS, and the EDS
reordered, any information represented as a passive
sequence remains dynamic. In the example shown in FIG.
19, the EDIN sequence fields are not used. However, many
passive sequences require this field to establish order among
the EDINs. Any passive sequence of EDINs is called an
Endo-Dynamic Statement Set (EDSS) 1904.
DATA AND IMAGES
So far, all information has been referred to in terms of

UEIs. While the UEI does provide all required information
about an entity to a process, it means little to an end-user. For
example, while a program can process and maintain an EDS
identified by the UEI value “112:10”, it would be pointless
for that program to display those numbers to an end-user.
Clearly, names and/or images must be associated with each
unique entity, so that a program can use them in its display
interface. Hereafter, “image” refers to both a binary image
and a name-string.
Aside from an image, an entity (as represented by an

EDIN), may also have associated physical data. For

6,092,077
15

example, a BOSS-applied database program would use
EDINs to record logical relationships and groupings, but it
could not directly use EDINs to store the different data
values being maintained by the database.

Both images and physical data are examples of Variable
Length Data (VLD). To maintain and store VLD in general,
a format called “Expandable Table Set” is used.
As shown in FIG. 20, an Expandable Table Set (ETS)

2002 is a file or memory pair, consisting of an Expandable
Table Array (ETA) 2004 and an Expandable Table Compos
ite (ETC) 2006. The ETA 2004 and ETC 2006 must exist
together or not at all. The ETA 2004 is a sorted list, where
each element is an Expandable Table Record (ETR) 2008.
Each ETR 2008 identifies information about (and the loca
tion of) an Expandable Table Block (ETB) 2010 within an
ETC 2006. As shown in FIG. 21, the ETR 2008 is a record
containing a UEI key, a flags field, an ETB size, an ETB
checksum and an ETB file address. The ETRs 2008 in the
ETA 2004 are sorted based on the UEI key. The ETC 2006
is simply a binary dataset composed of a number of variable
length ETBs 2010, in any order.
To find an associated piece of VLD, a binary search is

performed of the ETA 2004 for the input UEI. The UEI
comparison is binary, so if any field of a subsequent input
UEI is different, a different associated VLD occurrence
exists. Since the ETA2004 is ordered by UEI value, one ETS
2002 can be used to store all VLDs of all data. Where two
or more VLDs are required for a single UEI, separate ETS’s
2002 must be used.
As shown in FIG. 20, each ETA 2004 contains an Expand

able Table Array Header (ETAH) 2012 at the top, followed
by the actual ETA 2004 (list of ETRs 2008). As shown in
FIG. 22, an ETAH 2012 contains: a flags field, a self-ETS
UEI, an ETA size (number of ETR's) an ETA CHECKSUM
field to enable verification of the ETA file upon loading an
ETC size, an ETC CHECKSUM field to enable verification
of the ETC file upon loading, an ETA memory address, an
ETC memory address, an ETC buffer size, a current starting
ETR identifier, and a current last ETR identifier.

Through usage, VLDs will come and go in a system. That
is, when entities are deleted, their associated VLDs are also
deleted. This would leave holes of unused space between the
used ETBs 2010 of an ETC 2006. Fortunately, the process
to optimize an ETS 2002 is trivial. First, a temporary ETC
2006 buffer is allocated. Then, starting from the first ETR
2008, and by keeping a current pointer, all valid ETBs 2018
are copied, back-to-back, into the temporary ETC 2006. To
finish, the ETC 2010 is overwritten with the temporary ETC
2006 buffer and the temporary ETC 2010 buffer is
de-allocated.

If memory is scarce, the optimization can be performed
using a buffer as large as the largest ETB 2010. In such
cases, ETBs 2010 would be swapped (using unused holes)
until they are in a back-to-back order. Unlike the first
scheme, using a single ETB 2010 buffer, the ETBs 2010 in
the resultant ETC2006 may not be ordered in the same order
as the ETRS 2008.

Since a BOSS element can have an image and have
associated physical data, two ETS’s 2002 are used for each
element. FIG. 20 also shows the minimum set 2014 of ETS’s
2002 required at any level to enable BOSS VLD mainte
IläIl Cè.

INFOFRAME
FIG. 14 illustrates the components 1402 of the Informa

tion Frame (InfoFrame), which represents the highest level
of logical and physical data organization in BOSS. The
InfoFrame is a definition of the collection and usage of all

10

15

20

25

30

35

40

45

50

55

60

65

16
InfoPases found at a site, and other sites that may be
connected to the home site.

FIG. 23 illustrates the components of an InfoFrame Con
trol Record (IFCR), which is contained in the InfoFrame to
describe the default InfoPase processing, if any, for a site.
The IFCR contains a Local Name UEI field to provide a
local name for the InfoFrame known to the current site that
is used as key into the IMAGE-ETS for the InfoFrame (at
this site) A Flags field is used to record InfoFrame process
ing configurations. An SOI field recorded from the serial
number of the installed EDP is used to create all UEIs
generated at the current site. A Next SEI field is used to
provide the next available SEI value across the current site,
and this value is incremented, once read, by the EDP
processes which create UEIs. A Modifiers field is used to
provide operational thresholds and guidelines for the
InfoFrame, wherein these modifiers are: OLDEST VALID
EDS, START TIME, EDS MODIFY OCCURRENCES,
STOP TIME, and EDS MODIFY FREQUENCY,
To absolutely determine when EDS’s require

regeneration, it would be required to examine each EDIN in
each EDS, to determine all possible EDS's which that EDS
is dependant upon (in some way). Clearly, this is a time
consuming and an infeasible methodology to adopt. Instead,
the OLDEST VALID EDS is used. This is a time scalar,
indicating how old a valid EDS can be. If this is a low
number, EDS's are quickly deemed invalid and in need of
regeneration. If a high number, generated ElDS’s are
deemed valid for long periods of time.
While the EDP can record occurrences when distinct

changes are made to individual EDS's or SDEs, this fact is
not enough to estimate when an EDS requires regeneration.
For this reason, the OLDEST VALID EDS value is used.
While this number can be assigned, an End-Dynamic

Operator, “DETERMINE-OLDEST-VALID", can be used at
any time to automatically determine a value for this number.
The START TIME, and the three modifiers EDS MODIFY
OCCURRENCES, STOP TIME, and EDS MODIFY
FREQUENCY, are used by the DETERMINE-OLDEST
VALID operator. When first initiated, this EDO records the
START TIME, sets the EDS MODIFY OCCURRENCES to
zero, and enables the RECORD MODIFY flag in the IFCR
flags. This flag indicates that each subsequent EDS modifi
cation requires an increment of the EDS MODIFY OCCUR
RENCES modifier. Finally, this EDO prompts for a time
duration, and records a STOPTIME. At the appointed stop
time, the EDS MODIFY FREQUENCY is calculated based
on the other assigned/accumulated modifiers. This fre
quency is then used to determine an estimated OLDEST
VALID EDS value.
The InfoFrame also contains a Default InfoPase List

(DIL), whose elements are EDINs and which comprises an
EDCS. FIG. 24 shows an example DIL 2402 with three
EDCLs. First, for each parameter required for an InfoPase
activation, an EDIN occurs. No parameter EDINs are
present if the InfoPase requires no parameters. After the
parameter EDINs, the last EDIN associated with the Info
Base occurs, where the “activate InfoPase” EDO performs
all tasks associated with locating and activating a particular
InfoPase.
A Default Module List (DML) is used in the InfoFrame,

whose elements are EDINs. The DML is an EDCS, exactly
as the DIL2402, except that the EDIN subjects are all a UEI
generated for the InfoFrame DML. The InfoFrame-DML is
used and loaded before the DIL 2402, and InfoPase DMLs.
This enables the EDP to load native modules which may
have a hand in loading and activating InfoPases.

6,092,077
17

The InfoFrame also contains an InfoPase definition List
(IBDL), where each element is an IBDR. The IBDL is
frequently updated to ensure any newly added InfoPases are
included. The InfoFrame contains Data and Image ETS’s to
record such data associated directly with the InfoFrame. The
InfoFrame contains an Operator Information Table (OIT), to
identify and describe all Endo-Dynamic Operators. The
InfoFrame contains one or more EDO program files, each
containing the executable code for one or more operators.
The InfoFrame contains a Parameter ETS, to describe all
parameters for all EDOs. The InfoFrame contains a Bond
Information Table to describe all bonds. The InfoFrame
contains a Default Command List (DCL), to provide a
“default dynamic program” which EDP always (and possi
bly continuously) executes.
INFOBASE

FIG. 14 illustrates the structure of an Information Base
(InfoPase), which is a conglomeration of one or more
information modules. An InfoPase Definition Record
(IBDR) is used to provide image and processing options for
the InfoPase. An IBDR file exists for each InfoPase for
import/export purposes. All regularly used IBDRs are stored
on an InfoFrame basis.
As shown in FIG.25, the IBDR is composed of: a FLAGS

field to provide processing switches, a self-UEI field to
uniquely identify the InfoPase, and an image-UEI field to
provide a key into the InfoPase assigning an image for the
InfoPase. The Flags field is identical to the one in the IFCR.
A Module Definition List (MDL) is used to provide a list

of included modules in the InfoPase. Each element of the
MDL is an MDR as described under module section.
A Default Module List (DML) is used for the InfoPase

structured exactly as the DML stored at the Info?rame level.
The following modules identified by the InfoPase DML

are loaded and activated upon InfoPase activation. The Data
and Image ETS’s are used to record such data associated
directly with the InfoPase.

Modules can be included in an InfoPases in two ways:
shared, and exclusive. A shared module physically occurs
once across all InfoPases in the current InfoFrame, but may
be included in all Infosases. In a BOSS-applied environment
where concurrent processing is possible, the usual precau
tions and preprocessing must be applied before access is
granted. An exclusive module is what all modules are by
default, one that is exclusive to a particular InfoPase. An
exclusive module only appears in the InfoPase it is exclu
sive to. While other InfoPases can access an exclusive
module, any such access is regulated by the owner InfoPase.
An InfoPase can store a large amount of data and pro

cessing. In general, an InfoPase will have one or more
modules containing data in one or more data organizations,
and one or more modules containing programs which pro
cess that data. The modules containing programs which
process that data are optional, in that the programs that
process the BOSS data need not be written as BOSS
programs; they could be any binary program.
MODULES

FIG. 14 illustrates the structure of an Information Module
(IM), which is a collection of EDINs and ETS’s to record the
associated images and physical data. The minimum set of
required ETS’s is used as described in the previous section.
These ETS’s store all images and data for the module as well
as for all EDINs in the CNL. When saved EDS's are present,
images associated with saved EDS’s are also stored in these
ETS’s.
A Collective Node List (CNL) stores all EDINs, in

arbitrary order, which together make up all the EDS’s which

10

15

20

25

30

35

40

45

50

55

60

65

18
can be generated from that module. The CNL is always
loaded upon module activation. Most EDS generation opera
tors require the specification of one or more modules to use
as a source of generation; in such cases, all associated CNLS
must be loaded (in turn) and used as a source for generation.
A Set Definition List (SDL) maintains a list of “saved

EDS's". Each element in the SDL is a Set Definition Record
(SDR). As shown in FIG. 26, each SDR contains a self
identifier UEI field identifying the EDS, a GENERATION
PROCESS UEI field, a Flags field, a LAST-GENERATION
field, an EDS size field, and a memory address. The LAST
GENERATION and memory address fields are only used at
runtime, after the EDP has loaded a particular module, and
provide the current location and size of an EDS in memory.
The GENERATION-PROCESS UEI identifies a process
which will generate the EDS; this can be either an SDE, or
another process. The LAST-GENERATION field is also
only used at runtime; it is a date and time stamp of the last
generation. This field provides a measure of how valid or up
to date the EDINs pointed to by EDS address fields are. This
field is compared to (current time—oldest valid eds), and if
older, the associated EDS is deemed to be invalid and in
need of regeneration. The SDR flags field is used to record
which EDS’s are temporary and which are not. Further, it
identifies whether the EDS generation process is an SDE, or
other process. All newly generated EDS’s are by default
temporary. Using EDOs, a newly generated EDS can be
made permanent, or a generation process can be made to
result in a permanent EDS.
When an EDS is saved to a module, only unique EDINs

are added, or old EDINs updated in the CNL, EDINs are
never duplicated in the CNL. Next, the EDINs which make
up the equation (SDE) used to generate the EDS, are also
added to/updated in the CNL. Finally, the UEI for the SDE
is added to/updated in the SDL. Now, upon subsequent
module loading, a client can first re-generate the SDE, then
execute the SDE to regenerate a (new version of a) previ
ously saved EDS.
When a new EDS is dynamically generated, a new unique

UEI is assigned to it, and a new SDR created in the SDL.
The self-identifier field of the new SDR is assigned from the
newly created UEI value. All SDR flags are cleared, the last
generation date is set, and the EDS size and address fields
assigned from the newly generated EDS buffer. The SDE is
set from the LAST-SDE global variable; this variable is
cleared in each EDP cycle, and is set by the last line of any
SDE. As a result, it can be used by the EDP processes to
determine the associated SDE (or NULL for none).
As shown in FIG. 27, the Module Definition Record

(MDR) provides a UEI for the module image (stored in the
module ETS’s), as well as default processing flags for a
module. These are the same flags as for the IFCR and IBDR.
The MDR for a module is always stored in a separate file;
this file is only used when importing or exporting modules.
The MDR in this file (along with all other modules used by
an InfoPase) are duplicated in the Module Definition List as
defined for an InfoPase. So, in reality, the MDL contains the
latest version of all MDRs, and when import/export is
required, the MDR file is generated and used. This is done
to avoid potentially long update periods every time a module
is modified in some way, and poses no problems because the
MDR file is not used in regular processing; only for import/
export.
A Default EDS List (DEL) is used, where each element is

a UEI identifying an EDS to generate (i.e., identifying an
SDE/process to execute). All default EDS’s are generated
upon module loading.

6,092,077
19

The IM is a self-contained package of information, pro
viding values, images, data organization(s), data association
(s), and data processing. The IM is always constructed to
serve the needs of a client BOSS process. Since an EDS can
always be dynamically generated from a CNL, it is possible
to place incongruent or inconsistent information in the same
module; although this is not recommended, it poses no
problems to the BOSS environment, and values,
organizations, and associations remain unaffected. Some
module examples follow:
A BOSS program, where procedures, data-structure

definitions, and data occurrences are recorded, and later
generated as, EDS’s, which are processed by either the
EDP or a client BOSS program interpreter to run a
program.

A BOSS menu system, where menus are recorded, and
later generated as, EDS’s, which are processed by the
BOSS menuing client.

In general it is best to group information common to the
same compound information entity in the same module.
While out of context EDINs in a module do not create
problems by themselves, out of context SDEs and EDINs
would create potentially fatal processing problems. For
example, consider an out-of-context SDE which generates
an EDS for a data structure definition by default, for a
module whose purpose is menuing. This would more than
likely hang the menuing client. For these reasons, a BOSS
client can construct SDEs which “filter” all input EDINs for
consistency. Such SDES can check for particular types and
allows and disallow the input. So if the module is a menuing
system, data types like “procedure” could be optionally
disallowed.
SET DEFINITION EQUATION (SDE)
As mentioned above, EDS's are based on Set Definition

Equations (SDEs). An SDE is an expression composed of
Endo-Dynamic Operators (EDOs) and operands. An Endo
Dynamic Operator (EDO) can be almost any kind of opera
tor. FIG. 28 shows an example SDE 2802 with a C-like
format. A new EDS called MY-EDS will be the result of
resolving the right hand side of the equation. The atomic
binary SDE units are shown and numbered 1, 2, and 3 from
the deepest to the outermost SDE unit. The SUB, SEQ, and
ATT mnemonics are EDOs that perform filtering based on
different fields of the EDIN. The INTERSECT mnemonic is
a logical EDO and signifies that the resultant sets of both
operand expressions must be intersected. The expression
shown in FIG. 28 dictates that all EDIN’s in the “MY-EDS”
EDS will have a Subject equal to “W:X:” and an Attribute
equal to “A:B:”. The “MODULE-N” module is the module
used here for all operators, except INTERSECT.

The SDEs are always binary in nature. No matter how
complex the equation, it can always be broken down into
binary (and unary) SDE-units. As a result, an SDE is easily
implemented as an EDS.
FIG.29 shows an EDS 2902 for the SDE depicted in FIG.

28. This shows the Subject and Attribute fields of the EDIN
as UEIs. This EDS 2902 also shows the Bond and sequence
field values. As can be seen in FIG. 29, the SDE is simply
an EDCS. In this case, these EDCLs are shown, i.e., one for
each EDO showing in FIG. 28.

In this way, an EDS 2902 can be used to store equations
(SDEs) which define how other EDS's are dynamically
generated. The subject fields of all EDINs will always
contain a unique SDE-UEI associated solely with MY EDS.
The SDE by itself does not result in anything. But when the
SDE is applied to an existing ED)S or module, a new EDS
can be generated. As a result, a single module, with multiple
SDEs, can provide different dynamically generated EDS’s.

10

15

20

25

30

35

40

45

50

55

60

65

20
ENDO-DYNAMIC OPERATOR (EDO)
As mentioned above, Endo-Dynamic Operators (EDOS)

are to the Endo-Dynamic Processor (EDP) as instructions
are to a processor. An EDO is any executable body of code
requiring any number and type of parameters. While the
code for most EDOs is in the form of a binary executable OS
program (or procedure), EDOs expressed as EDCS’s can
also be created and used. As should be obvious, an EDO
occurrence with all its required parameters forms a complete
EDCL. So it is possible to construct an EDO and EDCL,
such that the EDCL activates the EDO (via the EDP),
wherein the EDO is itself an EDCS processed by the EDP.
This forces the EDP to be re-entrant, where the EDP must be
capable of correctly processing any number of EDCS’s in as
many streams of processing as initiated by various pro
CèSS?S.

Unlike conventional “instructions”, the EDO is not lim
ited in size or complexity. The EDO can be anything from
a one line procedure to a whole system (program). Further,
EDOs can freely call each other without interfering with
EDP process leveling or the EDP stack.

Incorrect process streams which are potentially fatal are
terminated, mostly before and sometimes after a fatal pro
cess error has occurred. All stack data regarding the process
(es) which were involved in a process stream resulting in the
fatal error(s), can be safely and accurately removed from the
EDP stack, such that pursuant EDP processing, and other
existing processes can continue.

For each EDO available for use, there exists an Operator
Information Record (OIR). As shown in FIG. 30, each OIR
contains: an OPERATOR UEI field to provide a key in the
OIT, a NUMBER OF PARAMETERS field to give the total
number of input and output parameters required by the
operator (the number of PDRs in the associated list), an
Endo-Dynamic-Library UEI to identify the library that con
tains the executable code of the EDO, and a CALLING
ADDRESS field to provide a memory address for the
operator that is only valid at runtime after the operator’s
executable code has been loaded into memory. The OIRs are
used at run time to verify calls to, and execute operators. As
shown in FIG. 14, all OIRs are permanently maintained in
the Operator Information Table (OIT), maintained at the
InfoFrame level. The OIT is a sorted list, wherein a binary
search locates a given OIR. The OIT is updated when EDOs
are imported or modified.
To record parameter data requirements for EDOs, the

PARAMETER-ETS is used. As shown in FIG. 14, this ETS
is stored at the InfoFrame level. The ETRs in this ETS have
EDO UEIs as the keys. The ETBs store ordered lists of
records, where each record is a Parameter Definition Record
(PDR). As shown in FIG. 31, a PDR contains: a Flags field
to identify general I/O type of the parameter, a Data Type
field to identify the required data type to internal BOSS
processes, a Data Size field to give the size of the identified
data type, a Type Image UEI field that identifies an image for
the data type stored in the InfoFrame IMAGE-ETS and a
Default Value UEI field that points to a default value
occurrence for the parameter in the InfoFrame DATA-ETS
(if no default value is supplied, this field contains a null
UEI). Both the OIT and the Parameter ETS are used at run
by the EDP to perform verified dynamic entry and execution
of EDCLs.
EDO-INFOBASE
An Endo-Dynamic Library (EDL) is an Information Mod

ule which provides a means for transporting and storing all
information regarding a given set of EDOs. All EDOs in an
EDL should be related in some general way; this is often

6,092,077
21

(part of) the name for the library. Note that hereafter and
throughout the document and figures, “Library” is used
interchangeably with “EDL”.
A strictly logical entity called Endo-Dynamic Group

(EDG) is used to organize all EDLs in various ways. Note
that hereafter and throughout the document and figures,
“Group” is used interchangeably with “EDG”.

All EDLs are collected by the Endo-Dynamic Operator
Infobase (EDO-InfoPase). The EDO-Infobase is an Info
Base like any other, but also encompassing any additional
program files required by the EDLs. The EDO-InfoPase
provides a way of accessing all available libraries and
library information. Further, using the InfoPase DML, a
certain base set of libraries are always activated (i.e., loaded
and ready to be processed via EDP). The EDO-InfoPase is
supplied with each EDP program/package, and is necessary
for the operation of the EDP

Whiles the OIT and the parameter ETS provide for quick
EDP processing at the top level, the bulk of the required data
for the EDO processing is provided by the EDO-InfoPase.
The module components as shown in FIG. 14 are used as
follows for a library. A library module is no different than
any other module, except that in some cases additional
program files are also associated with the module.

The Module Definition Records (MDR) comprises nor
mal module information, wherein the System flag is enabled.
The Collective Node List (CNL) stores EDINs in no

particular order. As well as normal SDE recording and
processing, these EDINs are used in two ways.

First, these EDINs are used to organize and specify EDOs
in the library, the fields need to be set a certain way. The
Subject field should contain a UEI for an EDL, or a UEI for
an EDLG. The Attribute field should contain a UEI for an
EDO. The Bond field should contain an “EDO Occurrence,”
which indicates that there is an occurrence of the EDO given
by the attribute in the library given by the subject. Finally,
the Sequence field is not used.

In addition, these EDINs are used to record EDOs pro
grammed as EDCLs, all fields are set as per an EDCL. All
EDINs in this CNL can be sorted by the two keys, i.e.,
subject and attribute, to provide an overall hierarchy of the
operator groups and libraries. In addition, the CNL can be
filtered for a particular subject (library or group) to generate
EDS's which can be used as menus, which are then
traversed, generated -a new menu EDS at each traversal
step. When an EDIN in library menu EDS is selected, any
number of further information is available for the EDO
identified by the EDIN's attribute (e.g., PDRs, image, code,
etc.). The client process can then perform further processing
using the EDO information.

The Image-ETS stores all images associated with all
EDOs (and their parameters) in the library, as well as the
image(s) for the library itself.
The Data-ETS uses a UEI key. Associated with the library

(i.e., using the module UEI), is an ETB containing a list of
OIRs. This provides a list of all EDOs in the library.
Associated with each EDO (i.e., using the EDO UEI), is an
ETB containing a list of PDRs, describing the parameters of
the EDO.

The SDL identifies SDEs (stored in the CNL) to generate
an EDS. For SDE-1, EDINs are sorted by the two keys: by
subject and attribute to provide an overall hierarchy of
operator groups and libraries.

For SDE-2, EDINs are filtered for a particular subject
(library or group) to generate EDS's which can be used as
menus, which are then traversed, generating a new menu
EDS at each traversal step. When an EDIN in library menu

10

15

20

25

30

35

40

45

50

55

60

65

22
EDS is selected, any number of further information is
available for the EDO identified by the EDIN’s attribute
(e.g. PDRs, image, code, etc). The client process can then
perform further processing using the EDO information.

For SDE-3, EDINs are filtered for a particular EDO
subject, and sorted by the sequence. This SDE generates an
EDCS executable by the EDP.

For DEL, this has one default EDS: EDS for the top-level
group. This is the same as SDE-2 above, where the source
subject is predefined.

If the code associated with an EDO is an EDCS, all
EDINs required to make up the EDO’s code body are also
stored in the CNL. If the code associated with an EDO is not
an EDCS (i.e., if the EDO code is some form of OS
executable code body), in addition to all normal module
files, an OS program file is also stored. This program file has
a filename derived from the associated EDO UEI values,
plus the normal OS executable extension. All such execut
able EDO program files are stored at the InfoFrame level.
When any library information is loaded, imported, or

modified, appropriate updates are made at the InfoFrame
level. After any such events, the OIT, parameter ETS, and
any EDO program files are updated as required, using the
just saved library data. While updating the system EDO
information is a simple procedure of replacing records and
files, the effects of such updates on user data containing
references to the updated operators could potentially be a
difficult to determine and diagnose.
LIBRARIES AND OPERATORS
The EDP requires a minimum basic set of libraries to

operate. These are:
Set Filtration Library
Control Flow Library
Physical Manipulation Library
The general membership requirement(s) and a minimum

set of EDOs are described for each library by the following
sections. In addition to any listed EDOs, any other qualify
ing EDO can be added to a library. However, all such
dynamically created EDOs are always tagged as “user” in
the associated OIR.
When EDOs are also made into bonds (a matter of

creating bond control records, since the process already
exists as the EDO), a viable but limited language is realized
for defining and executing BOSS programs embodied by
information modules, complete with data definitions as
realized by EDS's (each is an EDS in the module) and
executable code as realized by EDCS’s (each is an EDS in
the module). The more evolved and/or complex EDOs that
are introduced, the more robust such a language will
become, but it will do so non-linearly. This is because any
introduced EDO can call others in any (meaningful) com
bination that it sees fit. Each added EDO increases the
number of new possibilities combinatorially.

Further, given sufficient numbers of added EDOs, any
number of such dynamic programming languages are simul
taneously possible, where languages can interface invisibly
to any of the involved specific language processes. Any and
all such languages are simply an implementation of several
BOSS concepts and the specific usage of several BOSS
entities disclosed in this patent.
SET FILTRATION LIBRARY
An EDO in this library must process EDIN list(s), based

on any kind of input, to produce subsets of that EDIN list,
or new EDIN list(s). The minimum required set of filter
EDOs are described below. The EDOs listed below consti
tute the minimum required set of EDOs in the filtration
library:

6,092,077
23

Union
This EDO combines two or more input EDS’s into a third

output EDS.
Intersection

This EDO examines two or more input EDS's for com
mon EDINs and outputs a third EDS containing only the
common EDINs.
Subject-Match

This EDO searches the input EDS for EDINs having a
match in their subject field with an input subject and returns
those EDINs in FL new EDS.
Attribute-Match

This EDO searches the input EDS for EDINs having a
match in their attribute field with an input attribute and
returns those EDINs in a new EDS.
Bond-Match

This EDO searches the input EDS for EDINs having a
match in their bond field with an input bond and returns
those EDINs in a new EDS.
Sequence-Match

This EDO searches the input EDS for EDINs having a
match in their sequence field with an input sequence and
returns those EDINs in a new EDS.
Generate-Subject-Sequence

This EDO sorts the EDINs in the input EDS by their
subject field and then assigns sequence numbers to those
EDINs based on their sorted order.
Remove-Nodes

This EDO searches for and then deletes the input EDIN
from the input EDS.
Descendants

This EDO searches for any EDINs in the input EDS that
are the descendant of the input EDIN.
Ancestors

This EDO searches for any EDINs in the input EDS that
are the ancestor of the input EDIN.
Siblings

This EDO searches for any EDINs in the input EDS that
are the siblings of the input EDIN.

All of the above EDOs provide the basis for constructing
SDEs to formulate and process anything from a simple
database query, to data structure collection and processing,
to evolved, multi-level queries where specific information is
qualified to any degree and extent. Each specific application
requiring filtration would introduce SDEs which use the
above listed system-EDOs in various combinations with
other EDOs to accomplish further specific filtrations. Any
one such client procedure or program (in a client program
module) can be made into a user-EDO, and incorporated into
the currently known InfoFrame. Clients would create all
EDOs associated with a general purpose in the same EDO
library, and add the library to the EDO-InfoPase. This makes
the client supplied EDO accessible by all BOSS clients in
the InfoFrame.

In this way, flexible, dynamic, and custom-made infor
mation search engines can be built and supplied as EDOs.
Such EDOs would be then used by even bigger BOSS clients
such as an expert system, to unify, simplify and speed up
minor information gathering and simple correlation tasks.
CONTROL FLOW LIBRARY
An EDO in this library must be associated with process

flow of the EDP, or that of a BOSS client. The following lists
and describes the minimum required EDOs for this library.
Although more complex control flow EDOs are possible,
such EDOs would simply be “implementations” of the
technology disclosed by this patent.
Push

10

15

20

25

30

35

40

45

50

55

60

65

24
This EDO pushes the parameters onto the EDP stack.

Pop
This EDO pops a value from the stack into the parameters.

Peek
This EDO uses a stack index number to determine a stack

entry from the top, and return the value stored therein into
the given parameters.
Poke

This EDO uses a stack index number to determine a stack
entry from the top. Then the parameters are stored into the
stack entry.
Stack-Not-Empty

This EDO returns a true or false value dependent on the
condition of the stack.
Stack-Full

This EDO compares total stack space against currently
used space and returns true or false value dependent on the
condition of the stack.
Execute (prog-UEI)

This EDO locates, loads, and executes the binary OS
program identified by the input UEI. This EDO waits for the
program to terminate before returning.
Spawn (prog-UEI)

This EDO locates, loads, and spawns the binary OS
program identified by the input UEI, as a concurrent process.
This EDO does not wait for the program to terminate before
returning.
Call (prog-UEI)

This EDO locates, loads, and executes/spawns the BOSS
program identified by the input UEI. This EDO may or may
not wait for the program to terminate before returning,
depending on availability of concurrent processing in the
environment.
Jump (CES, NP)

This EDO sets the global variables associated with input
to the input values, thereby performing an unconditional
jump to another EDCL.
Jcond (cond-UEI, CES, NP)

This EDO performs a jump as per the jump EDO, but
based on a condition. The condition is a BOSS process (sets
of ordered EDCLs), which returns true or false. In most
cases, the condition can be automatically generated as a
SDE.
PHYSICAL MANIPULATION LIBRARY
An EDO in this library must manipulate EDS’s and

EDINs at a physical level, where a possible input parameter
for a physical EDO is a physical memory address. Some of
these physical EDOs are:
Sort

This EDO sorts the EDINs in the input EDS.
Remove-Duplicates

This EDO removes duplicate EDINs in the input EDS.
Length

This EDO determines the length of the input EDS.
Generate-Eds

This EDO generates an EDS for the input EDINs.
Activate-Module

This EDO activates the module created by the EDINs in
the input EDS.
Activate-InfoPase

This EDO activates the InfoPase created by the EDINs in
the input EDS.
The other physical EDOs are listed and described below.

Mostly these EDOs are combinations of calls to other EDOs
already described.
Load (WHAT)

This EDO loads the input file into an allocated memory
buffer, performing checksums, and returning the address of
the allocated buffer.

6,092,077
25

Purge-Data (WHERE, DAYS)
This EDO will irretrievably purge previously deleted

BOSS data by deleting entries in trash files. The input
parameter WHERE is a UEI. If the value is null, the purge
will occur for all deleted data in the InfoFrame. If a non-null
value, the UEI either identifies an InfoPase (find an IBDR
matching the UEI) or a module (find an MDR matching the
UEI). In these cases, all deleted data in the located InfoPase
or module will be purged. The DAYS parameter is optional
and specifies the number of days to keep deleted informa
tion.
Restore-Data (WHERE, DATA-UEI, DATE, DATE
DIRECTION, AUTO)

This EDO will retrieve previously deleted, but not purged,
information. The input parameter WHERE is a UEI. If the
value is null, the restore will consider all deleted data in the
InfoFrame. If a non-null value, the UEI either identifies an
InfoPase (find an IBDR matching the UEI) or a module (find
an MDR matching the UEI). The DATA-UEI identifies the
deleted data to be restored. If this value is null, all deleted
data in the identified location is considered for restoration.
If the DATE parameter is non-null, it is used together with
the DIRECTION parameter to restore occurrences of quali
fying information deleted on, before, or after a specific date.
If the AUTO parameter is non-null, this EDO will make a
best guess for all information restorations when duplicate
deleted data is encountered. Otherwise, this EDO will
prompt an operator with a choice of duplicate deleted
information with different dates. The best guess is arrived at
by grouping deleted data by date stamp, then restoring the
set of data with the most recent date.
Get-Image (UEI)

This EDO retrieves and returns the image (or name)
associated with input UEI, from an IMAGE-ETS. The
search starts from current module IMAGE-ETS and expands
to parent InfoPase and InfoFrame if not found at the module
level.
Set-Image (UEI, IMAGE)

This EDO retrieves and returns the image (or name)
associated with input UEI, from an IMAGE-ETS. The
IMAGE-ETS is located in the same manner as get-image
EDO. When located, the associated ETB image contents are
replaced with the input IMAGE.
Create-Node (MOD-UEI, SUBJ, ATTR, BOND, SEO)

This EDO creates a new node in the input module’s CNL,
using the given input parameters to set the node's fields. The
sequence field can be supplied as “null” when not required.
This is how information is added to BOSS at it’s most
primitive level. This process can be triggered from any
environment, so long as the UEIs provided are valid, or will
have meaning.
Delete-Node (MOD-UEI, NODE)

This EDO moves all EDINs in the CNL associated with
input module, which are binary-equal to the input EDIN,
NODE, to an associated trash CNL.
Create-Eds (MOD-UEI, POINTER, COUNT)

This EDO receives a memory address, POINTER, to start
of a list of EDINs in (some) memory. This is NOT an active
EDS at this time. Also receives a COUNT to indicate the
number of EDINs in the list. This operator creates a new
active EDS (not stored) containing the list of EDINs, and
returns a newly assigned UEI value. This operator is useful
for processes that either automatically or via user input,
create EDINs from scratch. The new EDS is always added
to the CNL associated with an existing module identified by
input MOD-UEI.

10

15

20

25

30

35

40

45

50

55

60

65

26
Add-Eds (MOD-UEI, POINTER, COUNT)

This EDO receives a MOD-UEI to identify a CNL to add
nodes to, as well as a memory address, POINTER, to start
of a list of EDINs, and a COUNT of those EDINs. The given
EDINs are then added to the identified CNL. This operator
will not add binary equal EDINs which already exist in the
CNL.
Copy-Eds (MOD-UEI, EDS-UEI)

This EDO makes a new EDS with the same contents as
the EDS given by input EDS-UEI and returns a unique UEI
to the new EDS. The new EDS is created in the module
identified by the input MOD-UEI (this must exist) The EDS
image remains the same.
Delete-Eds (MOD-UEI, EDS-UEI)

This EDO first generates the input EDS-UEI via generate
eds EDO, if required. Next, it calls the intersect EDO and the
assigns the CNL of the input module to be the resultant
“xor-eds” (i.e., the EDS containing EDINs in the CNL but
not in the generated EDS). The generated EDS is then added
to the associated trash CNL. Finally, the associated SDL and
DEL entries matching EDS-UEI are moved to the associated
trash files, if they exist.
Save-Eds (MOD-UEI, EDS-UEI)

This EDO is probably the most time and space consump
tive EDO. It assumes that an EDS (EDS-UEI) was previ
ously generated using the generate-eds EDO and then the
EDINs in the memory image were modified by some client
process. At this point, the memory image of the EDS needs
to be updated in the module CNL to reflect any changes
made by the client process. For example, consider a module
containing several procedures of a program. Each EDS can
then be generated from the program module on a dynamic
basis. Once generated, the procedure can be dynamically
modified by a programmer. Finally, the procedure is saved
again in the program.

Unlike specifically deleted EDINs and data, replaced
EDINs and their associated data cannot be recovered, unless
steps are taken by an Endo-Dynamic Editor.

In concurrent environments, where multiple processes can
access the same the module, it is best to let the currently used
Endo-Dynamic Editor handle all such issues. Being
dynamic, the EDE can be called by a BOSS client process
to safely load, edit, and/or save EDS’s in modules.
Create-Module (InfoPase-UEI, NAME, FLAGS)

This EDO creates a new module called NAME in the
InfoPase given by InfoPase-UEI. This EDO first generates
a new unique UEI for the new module. Then it creates an
associated MDR in the InfoPase’s MDL, with the newly
generated module UEI. Next, all required module files (as
shown in FIG. 14) are created (empty except for control).
Now the input module name is inserted in the new module
image ETS, by creating another new UEI for the image. The
image UEI is also stored in the new MDR. Finally, the inputs
FLAGS are assigned to the new MDR. The module can now
be used as a source of any physical manipulation to add data,
and later as a source of filtration to generate new EDS’s.
Copy-Module (MOD-UEI, InfoPase-UEI, NAME)

This EDO first generates a new unique UEI for the new
module. Next, all module files for module MOD-UEI are
copied to files with the same extensions and the new UEI for
filename. Then, a the MDR for MOD-UEI is copied into the
MDL for the input InfoPase (InfoPase-UEI), and its self
identifier set to the newly generated module UEI. The new
module name remains unchanged if the NAME parameter is
null. If NAME is a valid image, it will be copied to the newly
copied IMAG-ETC, replacing the existing value. The image
UEI value need not change.

6,092,077
27

Delete-Module (InfoPase-UEI, MOD-UEI)
This EDO first appends the contents of all module files to

their appropriate trash files, and then deletes all module files,
as well as associated control records.
Create-Infobase (NAME, FLAGS)

This EDO creates a new InfoPase called NAME in the
currently known InfoFrame. This EDO first generates a new
unique UEI for the new InfoPase. Then it creates a new
IBDR in the IBDL, with the newly generated InfoPase UEI.
Next, all required InfoPase files (as shown in FIG. 11) are
created (empty except for control). Now the input InfoPase
name is inserted in the new InfoPase image ETS, by creating
another new UEI for the image. The image UEI is also stored
in the new IBDR. Finally, the inputs FLAGS are assigned to
the new IBDR. The InfoPase can now be used as a source
of any physical manipulation to add data, and later as a
source of filtration to generate new EDS’s.
Copy-InfoPase (InfoPase-UEI, NAME)

This EDO first generates a new unique UEI for the new
InfoPase. Next, all InfoPase files for InfoPase InfoPase
UEI are copied to files with the same extensions and the new
UEI for filename; this DOES NOT include module files for
all modules encompassed by the InfoPase. Then, a the IBDR
for InfoPase-UEI is copied in the IBDL, where the self
identifier is changed to the newly generated InfoPase UEI.
Finally the new InfoPase UEI is returned. If NAME is a
valid image, it will be copied to the newly copied InfoPase
IMAGE-ETC, replacing the existing value. The modules are
shared by InfoPases. An InfoPase encompasses modules by
including MDRs for modules in its MDL.
Delete-InfoPase (InfoPase-UEI, CONTENTS)

This EDO first appends the contents of all InfoPase files
to their appropriate trash files, and then deletes all InfoPase
files. finally all associated control records at the InfoFrame
level are trashed. If the CONTENTS parameter is non-null,
all modules encompassed by the InfoPase are trashed via
calls to the delete-module EDO, prior to all above steps.
PHYSICAL STORAGE OF BOSS ENTITIES

Each of the BOSS entities described above, as well as all
those shown in FIG. 14, is identified and located by a unique
UEI. The identification methods have been described in the
sections above. The location method is irrelevant to the
BOSS technology, and any method will do, which given a
UEI, can locate the physical data associated with that UEI.
The following describes one such method of physical data
storage and location.

Using a conventional containment storage system (e.g.
UNIX, DOS, Windows), create an InfoFrame directory in a
storage media attached to the computer. The location of this
directory, in the existing directory hierarchy, is recorded in
the EDP program, such that when EDP is run from
anywhere, it will be able to locate the directory. Further, all
files shown in FIG. 14 (at all levels) are stored directly in the
InfoFrame directory. This flat and simple model is depicted
in FIG. 32. Two distinct file-sets are distinguishable at
InfoFrame level: system and information files. System files
contain those BOSS data entities which are critical to the
correct operation of BOSS processes. Information files are
generated as a result of information stored in BOSS format.
At the InfoFrame level, there is exactly one of each file 3202
shown in FIG. 32. At the InfoPase and module levels, there
are many files. In FIG. 32, the number N represents the total
number of InfoPases known to the InfoFrame, the number
M represents the total number of modules in all InfoPases,
and the number E represents the total number of available
EDO program files. Each InfoPase, module, or EDO file
name is a string derived from the UEI value identifying that

10

15

20

25

30

35

40

45

50

55

60

65

28
InfoPase, module, or EDO; this derived string is shown as
“-InfoPase-”, “-module>”, or “-EDO-” in FIG. 32. Since
UEIs are guaranteed to be unique, there is no possibility of
conflicting filenames in the InfoFrame directory. Now given
a UEI for an entity, all filenames for all files associated with
that entity can be constructed and immediately located in the
InfoFrame directory.

Looking at FIG. 32, it should be clear that the connecting
link between an IBDR and the InfoPase files, and the
connecting link between an MDR and the module files, is a
UEI. For example, the InfoPase UEI identifier in an IBDR
is used to generate the filename string associated with all
files for that InfoPase.
BOSS INFORMATION DELETION
When information is deleted in a BOSS environment, it is

always via a physical EDO involved in data deletion/
restoration. These EDOs define the methods of information
deletion in BOSS. The delete-node, and delete-eds EDOs do
remove information such that subsequent generations will
not find the “deleted” information. However, until “deleted”
data is automatically or manually purged, it can be restored.
Data is purged via the purge-data EDO, or as part of
automatic BOSS processing (again via purge-data), where a
concurrent process is initially started upon EDPstartup. This
process would regularly schedule purges, based on initial
user input or default values for to-purge durations. To enable
this, all associated BOSS files (shown in FIG. 14) will have
an associated “trash” file, where a trash file is structured as
its real counterpart, where in addition to a record, a date/time
stamp of deletion is also stored. For example, while the
entries in a real CNL are just EDINs, a trash CNL contains
records of the following structure:
EDIN
TIME STAMP
Entries are duplicated in a trash file until purged. To

restore information, the restore-data EDO is used. The
nature of this EDO enables manual as well as automatic data
restoration, where all information links and data are also
restored as before.
DEFAULT COMMAND LIST

As shown in FIG. 14, the Default Command List (DCL)
is an EDCS. The DCL is executed by the EDP after
InfoFrame initialization is complete. If no DCL is defined,
the EDP goes into an idle state, where it waits for input
EDCLs. The best usage of the DCL is to implement a
procedure containing an infinite loop, where the loop body
activates/reactivates any systems, InfoPases, modules, and/
or EDS's required to realize a continues and changing
overall process. The DCL is dynamic, in that any process
activated as a result of an EDCL in the DCL can alter the
contents of the DCL and return. This has the effect of
altering the continuous EDP process in arbitrary ways. The
DCL enables the EDP to institute dynamic perpetual pro
cessing.
The InfoPase and module activation processes will insert

EDCLs in the DCL, as and when required. As a result, the
DCL is automatically created/modified after InfoFrame ini
tialization is complete.
ENDO-DYNAMIC EDITOR (EDE)
The BOSS environment requires at Endo-Dynamic Editor

of some type. An EDE can use combinations of EDOs to
perform the real BOSS data edit. An EDE can also use any
kind of graphical user interface (GUI) or other input/output
interface. An EDE includes means to dynamically interact
with the EDP. An EDE includes means for dealing with
editing EDS’s, modules, and InfoPases in a an environment
where concurrent or multi-processing is possible. An EDE

6,092,077
29

includes means to maintain previous versions of modified
data, so that data recovery is possible via the EDE. An EDE
includes means to interact with the restore-data and purge
data EDOs, such that a seamless “UNDO" can be imple
mented as a combination of these EDOs and the data
recovery means of the EDE itself. An EDE includes means
for displaying in “bare mode”, where all EDINs are shown
and regular EDS processing is not performed, optionally
including means to show regularly generated EDS’s in
separate windows as required. An EDE includes means for
human as well as process interface, so that both a human and
a process can operate the EDE.
BASIC BOSS CLIENTS

These are some basic general usages of BOSS that cover
several important corner stones of computing. Each model
embodies a different process-view of an EDS. In each case,
the storage formats and some required Bond values are
assumed and given. Also in each case, an SDE is supplied if
applicable.
Each general model presented may be used by any

number of different real application programs. The basic
boss client-models are:

Data-Traversal comprises data entry, storage, retrieval,
with logical hierarchy/organization;

Structure-Definition comprises data structure definition
and usage;

Program-Execution comprises program, procedure,
parameter, variable, code, lines, etc., storage and usage
(i.e., execution);

Analyze-Data comprises the function of deriving meaning
and output any required actions given assumption data,
and new input.

Note that a DB interface is different from a program
execution interface only in how it processes the data. It’s just
a matter of perspective, on the same BOSS data (namely
EDINs in various lists and orders). Even the analyze-data
client can express all of its required rules and data as EDINs
(and ETS data). There is a difference between the first three
above listed clients, and the last. The first three are almost
entirely composed of calls to EDOs to accomplish their real
processing. The only processing in such clients requiring
additional code (to EDO-calls), is the code required for a
particular interface required by the client. All real processing
can be accomplished using EDOS. This means given an
operating EDP and its required initial data, these client
models can be constructed almost immediately, especially in
a GUI environment wherein interface construction is vastly
simplified. The last client listed above requires further code
(preferably BOSS executable procedures) to perform
deductive, and possibly heuristic processing. Each are of
these clients are described in ensuing subsections.
DATA ENTRY, STORAGE and RETRIEVAL
Many kinds of applications fall under this client-model. In

fact, this encompasses any process which requires data
storage, retrieval, and maintenance, where data exists in
some hierarchy/organization, and where such data is then
presented to a user in some depiction of the data organiza
tion. Examples of a Data-Traversal client are:

a system which maintains hierarchical data in a directory
like organization,

a system which defines and processes data structure
definitions, and

a dynamic menu (or window) definition, traversal, pro
cessing and maintenance system.

Further, many BOSS clients will need to incorporate a
Data-Traversal client (as well as other code) to automate the

10

15

20

25

30

35

40

45

50

55

60

65

30
tasks of data storage, location, retrieval, and maintenance.
Examples of this are: a system which dynamically processes
(interprets) program code, and any kind of database.
The tree 3302 of FIG. 33A is some hierarchy of data,

where, A, B, C, and E are logical entities, providing hier
archy for data entities identified by F, G, H, I, and K. This
tree 3302 could be a directory tree, or a menu-tree, or any
other kind of tree (a tree is hierarchical by nature). Although
not shown, the data organization is not limited to trees, and
any kind of graph, or other more compound data organiza
tion scheme can be used. In FIG. 33B, the leaf nodes G, H,
I, K of the tree 3302 do not appear as Subjects in the EDS
3304. If a process were to filter for EDINs with Subject
fields matching these IDs, the process would get an empty
EDS for all of them. In fact, just such a process can be used
to determine all leaf nodes in a tree-hierarchy.
Bond can be used to establish EDIN-typing, and subject

attribute relations. For example in a database, the statement:
“CarS5 is Crimson” can be expressed as a single EDIN, as
follows:

Source Target Bond Sequence

Car 55 Crimson is-the-colour-of N/A

By using SDEs, which call EDOs, simple and complex
data queries can be constructed that apply to all kinds of data
for any kind of BOSS client. For example, a system which
maintains a directory-like data organization, would con
struct SDEs which will locate files and directories, while a
database constructs SDEs to locate data with defined crite
rions and constraints.
DATA STRUCTURE DEFINITION AND USAGE
When adopting a method for defining data structures,

usually there are two basic types: primitive (e.g. string,
signed 32-bit number, etc), akd compound, where a struc
ture’s elements are composed of primitives and other com
pounds. As described above, a BOSS defined record struc
ture can have any kinds of elements whatsoever. This is
mainly because a UEI uniquely identifies an entity any
where. The other major factor is the already discussed
interchangeability of the source and target fields in the
EDIN.

FIG. 34 shows an example minimal rendition of BOSS
oriented data structure definition. At the top of FIG. 34, two
compound records, “A” 3402 and “Z” 3404, are shown.
Record “A” 3402 contains an element with data type “Z”.
Both compounds contain elements with primitive data types.
At the bottom half of FIG. 34, the corresponding EDS’s
3406 and 3408 for each record is shown. The Bond field is
used to define a binary relation as in any BOSS application.
The key is what those Bonds are. In this case, Bonds
describe elements of data definitions, primitive/compound
data types, and size.
The EDS shown for record “A” 3406 (and record “Z”

3408) would only contain all shown EDINs, if complete
structure traversal is performed. That is, all Attributes of a
Subject match are themselves Subject-matched, until empty
sets are reached. At each step, EDINs are accumulated. Such
a traversal process could be set to terminate at any level in
the data hierarchy. If set to “maximum” or “all levels”, the
EDS 3408 shown for record “Z” would be part of the
resultant EDS 3406 for record “A”.

In the EDS 3406 shown for record “A”, the Attributes of
four EDINs with a Subject of “A” represent the four
elements of record “A” 3402. The element-sequence field in

6,092,077
31

these EDINs establishes the order of elements in the data
structure. The rest of the EDINs describe the characteristics
of each of the elements of record “A” 3402.
Now consider element “B” in record “A” 3402. This

element generates a total of three EDINs: one with a Subject
of “A” and Attribute of “B”, and two with a Subject of “B”.
The first signifies “B” as an element of “A”; the next two
give the data type and size of element “B”. The Attribute
value shown as “STRING” would be a UEI value in reality.
Aside from the shown Bonds, any number of other Bond
values could be implemented to provide more detailed
descriptions of an element (e.g. associated process, input
coordinates, display-attributes, etc).

Aside from employing a data-traversal BOSS client, the
Structure-Def BOSS client uses SDEs to dynamically con
struct and generate data structure definitions. When an
element in a structure is created where the type is the bond
“call” or “execute”, it is a simple matter to construct an
EDCL from all element EDINs of equal subject. The EDCL
can then be executed in the normal manner. Since the EDP
is capable of executing EDCLs from anywhere and at any
level (limited by stack size), this enables BOSS defined data
structures to contain processes which are executed when the
data definition is accessed, regardless of the calling process,
or any other active process.
PROGRAM STORAGE AND EXECUTION

Using EDINs, the EDP, and EDOs, it is possible to store,
maintain, and execute any kind of program. As described
above, under the EDO section, a given set of EDOs can form
the instruction set for a programming language, when all
such EDOs are also made available as bonds. A BOSS
interpreted program can use the following EDIN
implementations:,

store an EDCS for each procedure,
use a Structure-Def client model to store and process

program data structures, or
use a Data-traversal client model to save, locate and

retrieve program code and data.
Since a client can also create construct and supply its own

bonds and EDOs (tagged as “user”), any missing bonds/
EDOs can be implemented by the client and seamlessly
integrated into the BOSS environment. The new EDOs will
be processed as per all EDOs, by the EDP Further, the
associated bonds can now be used to insert new code lines
(EDCLs) into the interpreted program.
BOSS is ideally suited to interpreted programs, although

it does support compiled programs as well. At a minimum,
a BOSS oriented program must contain definitions of:
data-types, variables, parameters, procedures, and lines of
code. If imperative programs are required, the associated
module must be tagged as “static”. This indicates to the EDP
that no EDS generation should take place and that the CNL
should be loaded and taken for the EDS(s) in question, in
some order. While interpretive programs can be directly
executed by the EDP, imperative programs require a “pro
gram execution” system, program or shell which facilitates
the execution of the imperative BOSS program. Such a shell
would construct/establish EDCL groups for the EDP, where
the last EDCL in each group returns control back to the shell,
until all program processing is complete. Even using a static
module, the normal control flow EDOs may not operate
correctly in an imperative program. This depends on
whether the operator performs a change of context or not.
For example, the “edp-pop” EDO changes the next EDCL to
be executed by the EDP, thereby changing the context of
current processing. Such EDOs almost always cause a
regeneration upon successful termination, to ensure updated

10

15

20

25

30

35

40

45

50

55

60

65

32
data. By introducing a lot of controls in such EDOs (and
complicating them), it is possible to detect an imperative
process, and return the parameters of would-be context
change, and it’s associated action(s) to the calling process.
This enables the calling process to always be in control of
process flow (except for fatal errors and the like).
The program called CCOPY, shown in FIG. 35 as 3502,

performs a Conditional Copy. It has two parameters, and two
variables. It also has one procedure which is not shown; only
called. The parameters of CCOPY are two UEIs to two
distinct files: Source File (SFILE) and Target File (TFILE).
First, the program 3502 gets the current date of each input
file and stores the dates in SDATE and TDATE. This is
accomplished by calls to the GET-DATE program proce
dure. This procedure is not shown, but it should be easy
enough to picture it as an OS call. Finally, the program 3502
compares the two dates and if the source file date is greater
than that of the target file, it copies the source file, over
writing the target file. Both the “if” and “copy” are accom
plished by OS or shell calls (i.e., native to BOSS interface).
The EDS 3602 shown on FIG. 36 depicts the required

EDINs 3604 to define and be able to execute, the CCOPY
program. The sequence field establishes an order, where a
set of EDCLs are realized. To further define a parameter or
variable, the same methodology as for a Structure-Def client
is used. For example, to define the SFILE parameter, the
following two EDINs 3604 could be added to the program
module CNL:

Subject Attribute Bond Sequence

SFILE STRING DATA TYPE NULL
SFILE “256” SIZE NULL

The SDEs can be used to dynamically generate compo
ments of the program, from the CNL. As a result, all program
components remain dynamic. So if a data structure changes,
the processes using that structure, or data in that structure,
will immediately experience the effects of the change. As
with any dynamic interpreted program, sufficient safeguards
must be taken to enure only changes without destructive
effects take place.
CONCLUSION

This concludes the description of the preferred embodi
ment of the invention. In summary,
The foregoing description of the preferred embodiment of

the invention has been presented for the purposes of illus
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It is intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.
What is claimed is:
1. A memory for storing data for access by a computer

program being executed by a computer, comprising one or
more data structures stored in the memory, the data struc
tures including one or more Endo-Dynamic Sets (EDS), the
EDS comprising a list of one or more Endo-Dynamic
Information Nodes (EDINs), the EDINs each representing
an atomic component of data, and the EDINs each compris
ing a subject identifier, an attribute identifier, and a bond
identifier, wherein the bond identifier defines a relationship
between the subject and attribute identifiers and each bond
identifier is associated with a body of executable code, so
that the executable code is performed by the computer as a
required action for the bond identifier when the EDIN is
accessed.

6,092,077
33

2. The memory of claim 1, wherein one or more of the
Endo-Dynamic Information Nodes (EDINs) comprise an
Endo-Dynamic Command Line (EDCL).

3. The memory of claim 2, wherein the Endo-Dynamic
Command Lines (EDCLs) comprise a computer program.

4. The memory of claim 2, wherein one or more of the
Endo-Dynamic Command Lines (EDCLs) are referenced by
an Endo-Dynamic Operator (EDO).

5. The memory of claim 4, further comprising a unique
Universal Entity Identifier (UEI) assigned to the Endo
Dynamic Operator (EDO), wherein the UEI is referenced to
invoke the EDO.

6. The memory of claim 4, wherein Endo-Dynamic
Operators (EDOs) further comprise native and non-native
EDOs, native EDOs reference executable code, and non
native EDOs reference one or more Endo-Dynamic Com
mand Lines (EDCLs).

7. The memory of claim 1, wherein the bond identifier
comprises an Endo-Dynamic Operator (EDO).

8. The memory of claim 7, wherein the Endo-Dynamic
Operator (EDO) comprises an instruction.

9. The memory of claim 1, wherein Universal Entity
Identifiers (UEIs) uniquely identify each Endo-Dynamic Set
(EDS).

10. The memory of claim 9, wherein each Universal
Entity Identifier (UEI) comprises:

a Site Owner Identifier (SOI) field, as assigned from a
unique Endo Dynamic Processor (EDP), to uniquely
identify the originating site for the data; and

a Site Entity Identifier (SEI) field to uniquely identify
each entity at a given site, the SEI being incrementally
generated and dynamically assigned to the entity, such
that the SEI is never used by more than one entity.

11. The memory of claim 9, wherein each Universal
Entity Identifier (UEI) is a unique identifier for data in one
or more different logical data organizations.

12. The memory of claim 9, wherein all data is stored and
accessed via a uniquely assigned Universal Entity Identifier
UEI).

(#) The memory of claim 1, wherein the Endo-Dynamic
Information Node (EDIN) further contains a sequence iden
tifier to provide for ordering among two or more EDINs
existing in the same Endo-Dynamic Set (EDS).

14. The memory of claim 1, wherein the Endo-Dynamic
Information Node (EDIN) is dynamically generated in the
computer.

15. The memory of claim 1, wherein a Set Definition
Equation (SDE) defines one or more conditions that qualify
an Endo-Dynamic Information Node (EDIN) to be a mem
ber of an Endo-Dynamic Information Statement (EDIS).

16. The memory of claim 15, wherein the Set Definition
Equation (SDE) is processed in the computer to produce an
Endo-Dynamic Information Statement (EDIS) that contains
qualifying Endo-Dynamic Information Nodes (EDINs).

17. The memory of claim 1, wherein a Set Definition
Equation (SDE) defines one or more conditions that qualify
an Endo-Dynamic Information Node (EDIN) to be a mem
ber of an Endo-Dynamic Command Set (EDCS).

18. The memory of claim 17, wherein the Set Definition
Equation (SDE) is processed in the computer to produce an
Endo-Dynamic Command Set (EDCS) that contains quali
fying Endo-Dynamic Information Nodes (EDINs).

19. The memory of claim 1, wherein data is accepted from
a user into the computer and converted into the Endo
Dynamic Information Nodes (EDINs) using an Endo
dynamic Editor (EDE) performed by the computer.

20. The memory of claim 1, wherein the Endo-Dynamic
Information Nodes (EDINs) are automatically generated in
the computer and stored in the Endo-Dynamic Sets (EDS’s).

10

15

20

25

30

35

40

45

50

55

60

65

34
21. The memory of claim 20, wherein the Endo-Dynamic

Information Nodes (EDINs) are generated by first generat
ing a new Set Definition Equation (SDE) and then process
ing the new SDE to produce a resultant Endo-Dynamic Set
(EDS).

22. The memory of claim 1, wherein an Endo-Dynamic
Processor (EDP) retrieves, interprets and executes Endo
Dynamic Command Lines (EDCL), and the order of the
EDCLS embodies an active sequence.

23. The memory of claim 22, wherein the Endo-Dynamic
Information Nodes (EDINs) are used to organize all data
stored on storage media maintained by the EDP.

24. The memory of claim 1, wherein two or more Endo
Dynamic Sets (EDS’s) are combined to form a Module.

25. The memory of claim 24, wherein Universal Entity
Identifiers (UEIs) uniquely identify each Module.

26. The memory of claim 24, wherein two or more
Modules are combined to form an Information Base
(InfoPase).

27. The memory of claim 26, wherein the InfoPase is a
database system, and Expandable Table Sets (ETS’s) are
used to store physical data values for the InfoPase.

28. The memory of claim 26, wherein one or more
Universal Entity Identifiers (UEIs) uniquely identify each
InfoPase.

29. The memory of claim 26, wherein the InfoPases are
combined to create new data.

30. The memory of claim 26, wherein the InfoPases
further comprise one or more InfoFrames.

31. The memory of claim 1, wherein a Set Definition
Equation (SDE) defines a query that is processed by the
computer to produce a set of one or more qualifying Endo
Dynamic Information Nodes (EDINs).

32. The memory of claim 1, wherein Endo-Dynamic
Information Nodes (EDINs) comprise executable com
mands of a computer program to be performed by an
Endo-Dynamic Processor (EDP) performed by the com
puter.

33. The memory of claim 32, wherein the Endo-Dynamic
Information Nodes (EDINs) are dynamically modified dur
ing processing.

34. The memory of claim 1, wherein the subject identifier
is a topic and the attribute identifier is information pertaining
to that topic.

35. The memory of claim 1, wherein the Endo-Dynamic
Information Nodes (EDINs) are organized into a hierarchy
of EDINs, and further wherein descendant information for
the hierarchy of EDINs is located in an Endo-Dynamic Set
(EDS).

36. The memory of claim 1, wherein the Endo-Dynamic
Information Nodes (EDINs) are organized into a hierarchy
of EDINs, and further wherein ancestor information for the
hierarchy of EDINs is located in an Endo-Dynamic Set
(EDS).

37. The memory of claim 1, wherein the Endo-Dynamic
Information Nodes (EDINs) are organized into a hierarchy
of EDINs, and further wherein sibling information for the
hierarchy of EDINs is located in an Endo-Dynamic Set
(EDS).

38. A memory for storing data for access by a computer
program being executed by a computer, comprising one or
more data structures stored in the memory, the data struc
tures including one or more Endo-Dynamic Sets (EDS), the
EDS comprising a list of one or more Endo-Dynamic
Information Nodes (EDINs), the EDINs each representing
an atomic component of data, and the EDINs each compris
ing a subject identifier, an attribute identifier, and a bond

6,092,077
35 36

identifier, wherein the bond identifier defines a relationship 39. The memory of claim 38, wherein each of the Endo
between the subject and attribute identifiers, each bond Dynamic Information Nodes (EDINs) comprise an Endo
identifier is associated with an organizational structure of Dynamic Information Statement (EDIS).
data, and the organizational structure of data is traversed
through the EDINs. #: :#: ::: ::: :#:

