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BINARY-ORIENTED SET SEQUENCING 

This application is a Continuation of application Ser. No. 
08/924,706 now abandoned, filed Sep. 5, 1997, which is a 
Continuation of application Ser. No. 08/356,878, filed Dec. 
15, 1994 and now U.S. Pat. No. 5,684,985, which applica 
tions are incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention discloses a method and apparatus 
for data organization, storage, retrieval and processing, that 
eliminates locational, structural or associative limitations. 

2. Description of Related Art 
Currently, information organization is implemented using 

many methodologies, which often serve different and dis 
tinct purposes for different general kinds of information. If 
the information is composed of specific facts, figures, 
names, and relationships, then the current approach forces 
each specific application to provide its own way of defining 
and using records. The only process who can possibly know 
what the information is, is the one application which creates/ 
maintains that kind of information. At the lower OS level, 
data can be any type ELS far as a database or any other 
application is concerned. So files and directories are used to 
organize information, where physical and logical organiza 
tions of information are one and the same. 

To find qualified and desired information, a process must 
first deal with files and directories. The process must incor 
porate and reflect the physical directory and file hierarchy 
into its logical information organization. Many current con 
tainment shells such as WINDOWSTM and DESQVIEWTM, 
attempt to provide a seamless gap between the OS and 
applications, so that a process does not have to deal with OS 
details. Aside from being unstable, such shells are still 
constricted by containment. That is, the logical and physical 
organizations of information become the same at some level. 
That is the level at which logical expansions, 
reorganizations, and further associations become impossible 
for containment. 

SUMMARY OF THE INVENTION 

To overcome the limitations in the prior art described 
above, and to overcome other limitations that will become 
apparent upon reading and understanding the present 
specification, the present invention discloses a computer 
implemented method and apparatus for information 
organization, wherein atomic information can be both static 
and dynamic, but the compound information (e.g., 
associations, groupings, sets, etc.) of such atoms always 
remain dynamic. Unless otherwise directed, a compound 
information entity is always dynamically determined and 
generated. This determination is based on the processing of 
a defined condition, wherein all atoms qualifying the con 
dition are included in the compound. This dynamic deter 
mination eliminates the need to “update” the compound, 
when atoms and/or compounds common to two or more 
compounds are changed. Further, each information com 
pound can be dynamically generated based on an existing 
definition for that compound. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Referring now to the drawings in which like reference 
numbers represent corresponding parts throughout: 

FIG. 1 is a block diagram that illustrates one possible 
hardware environment for the present invention; 
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2 
FIG. 2 is a block diagram that illustrates the structure of 

an InfoFrame according to the present invention; 
FIG. 3 is a block diagram that illustrates the associations 

present in a containment organization; 
FIG. 4 is a block diagram that illustrates the binary 

associations according to the present invention; 
FIG. 5 is a block diagram that illustrates grouping in a 

containment organization to achieve a combined topic; 
FIG. 6 is a block diagram that illustrates grouping accord 

ing to the present invention to achieve a combined topic; 
FIGS. 7A-7E are a block diagram that illustrates a current 

method of organization implemented according to the 
present invention; 

FIGS. 8A-8B are a block diagram that illustrates a 
compound logical structure according to the present inven 
tion; 

FIG. 9 is a block diagram that illustrates associative 
processing according to the present invention; 

FIG. 10 is a block diagram illustrating the structure of the 
Universal Entity Identifier (UEI) according to the present 
invention; 

FIG. 11 is a block diagram illustrating the structure of the 
Endo-Dynamic Information Node (EDIN) according to the 
present invention; 

FIG. 12 is a block diagram that illustrates the valid 
combinations of the EDIN fields in terms of value according 
to the present invention; 

FIG. 13 is a block diagram illustrating the structure of the 
Bond Information Record (BIR) according to the present 
invention; 

FIG. 14 is a block diagram that illustrates the structure of 
an InfoFrame according to the present invention; 

FIG. 15 is a block diagram illustrating the structure of the 
Bond Flags portion of the BIR according to the present 
invention; 

FIG. 16 is a block diagram illustrating the structure of the 
Bond Organization Record (BOR) according to the present 
invention; 

FIG. 17 is a block diagram that illustrates logical bond 
organizations according to the present invention; 

FIG. 18 is a block diagram that illustrates the structure of 
a command line according to the present invention; 

FIG. 19 is a block diagram that illustrates the structure of 
an Endo-Dynamic Information Statement according to the 
present invention; 

FIG. 20 is a block diagram that illustrates the structure of 
an Expandable Table Set according to the present invention; 

FIG. 21 is a block diagram illustrating the structure of the 
Expandable Table Record (ETR) according to the present 
invention; 
FIG.22 is a block diagram illustrating the structure of the 

Expandable Table Array Header (ETAH) according to the 
present invention; 

FIG. 23 is a block diagram illustrating the structure of the 
InfoFrame Control Record (IFCR) according to the present 
invention; 

FIG. 24 is a block diagram that illustrates the structure of 
an Activation List Example according to the present inven 
tion; 
FIG.25 is a block diagram illustrating the structure of the 

Infobase Definition Record (IBDR) according to the present 
invention; 

FIG. 26 is a block diagram illustrating the structure of the 
Set Definition Record (SDR) according to the present inven 
tion; 
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FIG. 27 is a block diagram illustrating the structure of the 
Module Definition Record (MDR) according to the present 
invention; 

FIG. 28 is a block diagram that illustrates the structure of 
a Set Definition Equation according to the present invention; 

FIG. 29 is a block diagram that illustrates the structure of 
an Endo-Dynamic Set comprised of Set Definition Equa 
tions according to the present invention; 

FIG. 30 is a block diagram illustrating the structure of the 
Operator Information Record (OIR) according to the present 
invention; 

FIG. 31 is a block diagram illustrating the structure of the 
Parameter Definition Record (PDR) according to the present 
invention; 

FIG. 32 is a block diagram that illustrates flat storage 
organization according to the present invention; 

FIG. 33A-B is a block diagram that illustrates the struc 
ture of an Endo-Dynamic Set hierarchical data tree accord 
ing to the present invention; 

FIG. 34 is a block diagram that illustrates the structure of 
an Endo-Dynamic Set structure definition according to the 
present invention; 

FIG. 35 is a block diagram that illustrates the structure of 
a program example according to the present invention; 

FIG. 36 is a block diagram that illustrates the structure of 
an Endo-Dynamic Set comprising an interpreted program 
according to the present invention; 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

In the following description of the preferred embodiment, 
reference is made to the accompanying drawings which 
form a part hereof, and in which is shown by way of 
illustration a specific embodiment in which the invention 
may be practiced. It is to be understood that other embodi 
ments may be utilized and structural changes may be made 
without departing from the scope of the present invention. 
OVERVIEW 

Information can be generally described as either being 
atomic or compound, where atomic information is an 
elementary unit and compound information encompasses 
any combination of atoms and other compounds to serve a 
given purpose. The present invention, termed Binary Ori 
ented Set Sequencing (BOSS), is; based on the concept that 
the minimal common information structure for any body of 
data is binary. This binary view of data organization 
achieves an information management environment in which 
any information of any complexity and type can be 
represented, viewed, stored, and processed. 
The present invention further adopts a view of informa 

tion organization where atomic information can be both 
static and dynamic, but the compound information (e.g., 
associations, groupings, sets, etc.) of such atoms always 
remain dynamic. Unless otherwise directed, a compound 
information entity is always dynamically determined and 
generated. This determination is based on the processing of 
a defined condition, wherein all atoms qualifying the con 
dition are included in the compound. This dynamic deter 
mination eliminates the need to “update” the compound, 
when atoms and/or compounds common to two or more 
compounds are changed. Further, each information com 
pound can be dynamically generated based on an existing 
definition for that compound. 
The present invention differs in several ways from con 

ventional information storage and processing environments. 
These are listed below, and described in ensuing subsec 
tions: 
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The InfoFrame 

Binary Association 
Universal Entity Identification 
Dimensia 
Associative Processing 
As a result of these elements, an environment becomes 

feasible, where the elements of logical organizations of all 
data are stored as nodes. Further, processes are able to view 
the same nodes in different ways. To be more precise, BOSS 
can achieve any logical structure given the same basic set of 
information atoms. This means data is maintained the same 
way, regardless of the process manipulating it, and regard 
less of the process's view of the involved data. Instead of 
having to implement and store static single-purpose control 
structures; and records, a process need only store a set 
definition equation which results in a particular view of the 
data. This promotes an environment in which a general pool 
of nodes for all kinds of different data can be used as the 
basis for dynamically generating different views for all the 
different processes which use pieces of the collective data 
pool in different ways. 
HARDWARE ENVIRONMENT 

FIG. 1 depicts the hardware architecture of the preferred 
embodiment in accordance with the principles of the present 
invention. Generally, the present invention operates in a 
network environment 100 having a decentralized hardware 
architecture, including one or more servers 102, and a 
plurality of user workstations 104, all coupled together 
through the network 106. In the preferred embodiment, the 
network 106 is depicted as having a ring topology. Those 
skilled in the art will be able to bring to mind other known 
network topologies such as, but not limited to, a star or a bus 
configuration. Typically, the server 102 will include a data 
base 108, although the workstations 104 themselves could 
store all or a part of a database 108. 
THE INFOFRAME 
The present invention provides for the existence of a 

global (universal) Information Frame (InfoFrame), where all 
types of systems (InfoPases) which include various pro 
grams and databases (modules), and various data structures 
and data values (views and nodes) can co-exist in the 
InfoFrame, and data can be created, modified, organized, 
shared and exchanged on a dynamic basis. Data exchange 
across the InfoFrame is trivial, no matter what the system 
type. This makes all the processing of data import/export 
and usage across the InfoFrame invisible to all client pro 
CèSS?S. 

FIG. 2 is a block diagram that illustrates the structure of 
an InfoFrame 200 according to the present invention. The 
present invention orders all information in the following 
Imall?ler. 

Information Frame (InfoFrame) 200, which is the overall 
grouping of all information. 

Information Base (InfoPase) 202, which is a set of 
information modules and other control information that 
provides a self-contained set of consistent modules 
which provide for needs of a BOSS client. 

Endo-Dynamic Information Node (EDIN) 204, which is a 
binary association of two information atoms, Subject 
and Attribute, as well as a Bond that binds them. 

Endo-Dynamic Set (EDS) 206, which is a dynamically 
generated, possibly ordered, list of EDINs 204 that 
describes, depicts, or embodies a subject, attribute, or 
bond. 

Information Module (IM) 208, which is a set of EDS's 
206 and other control information that provides a 
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self-contained set of consistent EDS 206 which provide 
for needs of a BOSS client. 

An EDS 206 may contain any number of EDINs 204 or 
be empty. The contents of an EDS 206 are dictated by a 
condition for that EDS 206, wherein the condition is pro 
vided by a Set Definition Equation (SDE). The more com 
plex the SDE, the more particular data and/or data relation 
ships are required to satisfy membership in the resultant 
EDS 206. However, SDE complexity does not directly effect 
the size of a resultant EDS 206. The size of a resultant EDS 
206 simply depends on the number of EDINs 204 which 
satisfy the associated SDE. This size depends on the kinds 
of data being organized, and how frequently instances of that 
kind of data occur. 

All EDS's 206 are dynamically generated using one or 
more modules as the source of generation. A module 208 is 
primarily a set of EDINs 204 with no particular order. 
Modules 208 can then be included in one or more InfoPases. 
Each InfoFlase 202 provides evolved information access, 
searching, and processing, by including as many modules as 
required to account for all data and processes. The InfoF 
rame 200 is the totality of all InfoPases 202 and is the largest 
possible data space. Every individual computer or network 
has its own InfoFrame 200. When two or more computers or 
networks are connected such that data exchange is possible, 
the InfoFrame 200 has simply become larger. In this sense, 
there is only one InfoFrame 200 on a global basis, and it is 
just a matter of what portion of the InfoFrame 200 a user is 
connected to or has access to. 
An EDS 206 differs from a set, as that term is understood 

in the art, in several important ways. First, an EDS 206 can 
have a heterogeneous meaning. That is, an EDS 206 can 
contain any number of different meanings, data or represen 
tations. 

Second, an EDS 206 does not have to conform to the 
concept of containment. Containment is where an element 
“X” physically exists or is “contained” within set “Y”. In a 
non-containment environment, there is no predefined mean 
ing between “X” and “Y”, just because one contains the 
other. In set methodology, the only meaning that can be 
derived is that “X” is contained by “Y”. In the present 
invention, “X” and “Y” can have any number of relation 
ships defined directly in EDINs 204 or streams of related 
EDINS 204. 

Third, it is possible to execute expressions to modify an 
EDS 206 or create a new EDS 206 in terms of a meaningful 
formula. This formula is based on operators which can affect 
EDINs 204 or EDS's 206 in a number of different ways. In 
contrast, set-based mechanisms are based on adding or 
extracting the meaning of the set by adding or extracting 
elements from zero or more sets. 

Since, by default, all modules are accessible across the 
InfoFrame 200, each added module increases the possibili 
ties for different and new InfoPases 202 by a substantially 
large number. Clearly, this increase is non-linearly propor 
tional to the number of modules 208. Formula Abelow gives 
the number of unique possibilities, where “n” is the number 
of modules 208. Formula B gives the absolute increase in 
unique possible combinations of modules 208, when one 
module 208 is added. Formula C gives the real number of 
increased possibilities, by assuming that % of all such 
unique possibilities have no meaning and serve no purpose 
in reality. Table I shows the calculated numbers based on 
different module 208 numbers. 
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6 
wherein the operator indicates a factorial operation. As 
can be seen, this is slightly less than “nxn”. 

... 22 

TABLE I 

NUMBER 
OF TOTAL REAL INCREASE IN 
MODULES POSSIBILITIES POSSIBILITIES 

1 0.25 
2 0.50 0.25 
5 30 30 
10 907,200 907,170 
100 2e-H157 2e-H157 

The ease of integration and data sharing, combined with 
the rapid increase in potential new InfoPases, provides an 
environment where, as more data is added and as more 
processing takes place, the environment as whole becomes 
more stable and capable. Further, using automation and 
chaining for all levels of the InfoFrame 200 (including the 
InfoFrame 200), clients can tie together InfoPases 202 in 
particular ways, such that automatic activities take place, 
these activities including the monitoring, retrieval, storage, 
and determination of: 

Entity value; 
Entity organization; 
InfoPase 202 chaining and the determination of chains; 
Module 208 chaining and the determination of chains; and 
InfoFrame 200 native processes and settings. 
Given a defined InfoFrame 200, client processes can use 

BOSS operators as to manipulate part or all of the InfoFrame 
200 in variety of ways to display, modify, process, search, 
etc., the information. A BOSS client always calls the Endo 
Dynamic Processor (EDP), passing it a list of operators (and 
their parameters). The EDP is a software Command Proces 
sor (CP), which accepts an operations list as input and 
executes each line in the order specified by the operations 
list. Note that the operations list is an EDS itself, providing 
for variable number of parameters for the operators. In a 
pure BOSS environment, a top-level operation list 
(program) would be executed at power-on. This program is 
an infinite loop where exit is possible by satisfying monitor 
processes, and where each required InfoPase is located, 
verified, and initiated. In a multi-tasking environment (e.g., 
Windows), linear module chaining and InfoPase chaining is 
possible. In a multi-processing environment (e.g., Windows 
NT), real-time (and therefore non-linear) InfoPase chaining 
and module chaining is possible. 

In a multi-site (computer) environment, each site executes 
operations lists via its own EDP and accepts remote opera 
tions lists as well. Since a Universal Entity Identifier (UEI) 
identifies the site from which data originates (i.e., is located 
on), remotely located data is potentially slower, but is 
handled via EDP-to-EDP communication and data transfer 
that is invisible to the client. Therefore, it is possible for one 
site to initiate a process that will execute via the EDP of 
another site, thereby leaving the original site free to perform 
further immediate processing. 
BINARY ASSOCIATION 

In a logical information organization, an atom of infor 
mation can be a logical representation for a topic, event, 
process, or entity which can exist, be identified, and requires 
processing. A logical organization exists when the informa 
tion atoms are associated in different ways to produce a 
structure. In current information organization 
methodologies, the only kind of association between two 
atoms of information is containment. This is true no matter 
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how evolved the containment method may be. For example, 
in object-oriented programming methods, objects can have 
associated predefined processes, where this is accomplished 
by the object containing the processes or references to those 
processes. 

Current methods maintain child-lists for each parent to 
record logical organization. A child is only recognized as 
having an association if it is a parent itself. 

FIG. 3 is a block diagram that illustrates the associations 
present in a containment organization. In FIG. 3, the atoms 
shown on the right, identified as B 304, C 306, D 308, and 
E 310, are the children of A302. The containment approach 
is to store the atoms (or identifiers to atoms) B 304, C 306, 
D 308, and E310 in the logical control record for A302. For 
example, a directory in DOS or UNIX is simply a file 
containing a list of that directory’s contents. 

Unlike a conventional set-element, the EDIN provides 
two atoms (or identifiers of atoms): a Subject and an 
Attribute. Each of the atoms given by an EDIN is an 
information atom in the sense described above. The 
Attribute provides additional association, enhancement or 
qualification to a given Subject atom. As a result, an EDIN 
contains a binary-association within itself. The EDIN is an 
independent entity, capable of existing in any EDS whose 
condition (SDE) can be met. The Subject and Attribute 
atoms can be used in various ways to express any number of 
different associations. As a result, an EDS (a set of EDINs) 
can contain any number of singular relationships to describe 
a more general association. 

FIG. 4 is a block diagram that illustrates the binary 
associations according to the present invention. FIG. 4 
shows four EDINs with a Subject of A 402 and Attributes B 
404, C 406, D 408, and E 410. The condition for this EDS 
is simply that the Subject of each EDIN must be A402. Each 
EDIN provides a relation, but all EDINs together describe 
the same tree as shown in FIG. 3. In this way, a collection 
of EDINs provide binary-associations between Subject atom 
A 402 and the various Attributes 404–410. 

Note that it is equally possible to dynamically generate 
another EDS where the condition (SDE) is that the Attribute 
must be B 404. This EDS would describe all atoms which 
have the Subject in a relation with B 404. Yet another SDE 
could produce an EDS where all Subjects are A 402 and all 
Attributes are B 404. This EDS would describe all the 
possible associations of A 402 and B 404. 

Containment methods also experience problems when 
two existing information organizations need to be combined. 
FIG. 5 is a block diagram that illustrates grouping in a 
containment organization to achieve a combined topic. The 
two existing organizations under A 502 and B 504 are 
combined to produce a combined organization 506. No new 
associations are produced, the associations of A 502 and B 
504 remain unchanged. Containment methods have no way 
of actually integrating the two organizations because iden 
tification of atoms is based on location. Consider the atom 
D 506 under topic A502. This atom also occurs under topic 
B 504. In the resultant combined organization, atom D 506 
is duplicated, since the location of the two were different 
prior to combining the organizations. This is actually not 
good as the duplicate atom in the new organization will 
confuse existing processes which access atom D 506. As a 
result, combing two logical containment organizations is 
often manual and always time consuming. Using BOSS, the 
same two organizations can be combined without the prob 
lems common among containment approaches. 

FIG. 6 is a block diagram that illustrates grouping accord 
ing to the present invention to achieve a combined topic. 
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8 
FIG. 6 shows an EDS format of the same topics A 602 and 
B 604 as in FIG. 5. Again, atom D occurs both under topics 
A 602 and B 604 prior to the merge. The combined topic 606 
simply contains all EDINs of both topics, where the condi 
tion for the EDS is that the EDIN Subject must be either A 
602 or EB 604. The atom D occurs as the Attribute of two 
EDINs, but is not duplicated. That is, both EDIN Attributes 
identify the same exact information atom. 

In this way, BOSS is independent of the location of 
information atoms in an organization. In other words, BOSS 
achieves a complete separation of physical and logical 
locations of data. Note that this is only possible because of 
the endo-binary nature of the EDIN, the derived binary 
association in an EDS, and universally unique data identi 
fication and location. 
UNIVERSAL ENTITY IDENTIFICATION 
The next cornerstone of BOSS is the universally unique 

identification and location of items. In BOSS, each set and 
each element is uniquely identifiable via a Universal Entity 
Identifier (UEI). This means that any topic/object can be 
uniquely identified, under all conditions. If this were not true 
and a containment-based approach were used, BOSS could 
be inadvertently rendered impotent because the Subject and 
Attributes of an EDIN could be ambiguous. The ambiguity 
is introduced because if an item (Subject or Attribute of an 
EDIN) cannot be uniquely identified, it cannot be uniquely 
or correctly associated with other items. 
DIMENSIA 
The next element of BOSS is called “Dimensia”. Dimen 

sia loosely refers to contexts or levels of abstraction that a 
method for information organization is able to achieve at 
both atomic and non-atomic levels. Most current systems 
use flat or static multi-level methods for information orga 
nization. A flat method or structure employs one level of 
abstraction. A static multi-level method provides a maxi 
mum of N predefined levels of abstraction. 

In all current methods, an information atom qualifies 
and/or describes itself. For example, an object in an object 
oriented programming system may contain the atomic 
element’s 32 bit number, string, and date. While describing 
itself, the singular atom does not immediately provide a 
relationship to any other entities. For example, an atomic 
date object element simply tells you that fact; it does not 
provide you with any relationships it may have to any other 
entities. It is the object containing the elements which is 
known to have relationships with each atom. By further 
including object deriving procedures in an object, one or 
more atoms may be related to other entities, but only the 
object driver knows this fact, and the identity of the asso 
ciated entities. So even in evolved containment methods, 
only a limited set of the data relationships are given by the 
data itself; the rest is process dependant. 

FIGS. 7A, 7B, 7C, 7D, and 7E are block diagrams that 
illustrate a current method of organization, e.g., a binary tree 
702. To have this logical structure, the organization can be 
of two general types. It can be an array 704 where tree 
traversal is performed via mathematically calculated 
indexes, based on current index. Or it can be a set of records 
706 with left and right pointers. In either case, an inflexible 
control structure is used to achieve logical organization. 
These structures are inflexible because they are static in 
nature. For example, should the order of the elements in the 
array 704 change, a different tree (if one is decipherable at 
all) is now represented. The record example 706 is free of 
this problem, but the control record is particular and can 
only be used for binary trees and linked lists. 

In BOSS, each EDIN contains a Bond between a Subject 
and an Attribute. As described above and shown by FIG. 3 
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and FIG.4, an EDS 708 can represent a tree by collecting all 
EDINs with the same Subject. However, to implement all 
levels in a tree, Attribute atoms in EDINs occur as Subject 
atoms in other EDINs. In FIGS. 7A-7E, to record the 
example binary tree 702, an EDS 708 records enough EDINs 
to relate all required associations. Note that to discern left 
and right children, the Bond specified in the EDIN can be 
used. Note that since an EDS is dynamically generated, 
insertions and deletions to/from a weighted tree 710 are 
trivial as shown in FIG. 7E, and do not involve complex left 
or right sub tree rotation. 

In general, by duplicating the EDIN (i.e., twice the control 
data) with same Subject and different Attributes, two or 
more relationships of the same Subject atom and various 
Attribute entities can be established. In each case, the 
particular relationship is identified. In this way, all the 
different relationships an atom has to one other entity, as 
well as expressing all the different entities with which that 
atom has a relationship, can be expressed. Therefore, using 
BOSS methodology, the maximum number of possible indi 
vidually defined relationships of one entity with others is 
infinite and is only constrained by the amount of available 
storage space. This is a major aspect of Dimensia. 
When complex and/or compound logical organizations of 

data are used, current methodologies are also forced to 
employ (and implement) complex and/or compound pro 
cesses to traverse the organization. Consider the case shown 
in FIGS. 8A and 8B, which are block diagrams that illustrate 
a compound logical structure according to the present inven 
tion. In FIGS. 8A-8B, each atom of the example binary tree 
702 of FIGS. 7A–7E is also an element in a distinct and 
separate two-dimensional array 802. Using current 
methodologies, new structures must be introduced, i.e., eight 
two-dimensional arrays of DATA IDENTIFIER. The DATA 
IDENTIFIER values of atoms “A” to “H” would then be 
stored in appropriate locations in one of arrays, A1 to A8. 
Now the program dealing with the data must not only 
include processes for the old binary-tree record 706, but also 
include processes to manipulate the arrays. 
To implement the example compound organization 802 

using BOSS, new EDINs are introduced, not new structures 
or processes. FIGS. 8A and 89 illustrate a simple (and 
inefficient) two-dimensional array implementation, where 
the EDINs are sequenced based on a value calculated from 
two-dimensional values. The EDS 804 actually encom 
passes all the arrays, where sequenced subsets of EDINs 
represent two-dimensional arrays. In each EDIN subset, the 
atom which coexists in the binary tree 802 is shown; this 
atom would occur in the sequence resulted from its array 
coordinates. Each such EDIN set is not a two dimensional 
array in the actual sense, and is very sparse. Again, the 
dynamic nature of an EDS, means that the EDS is sequenced 
upon generation. 

Note that the additional EDINs 804 to represent the arrays 
could be stored together with the EDINs for the binary tree 
708 of FIGS. 7A-7E in a module. Upon loading the module, 
and depending on the Set Definition Equation (SDE) used, 
one or the other of the EDS's can be produced. In this way, 
Dimensia is made possible for information, where no new 
processes or control structures are required, and only new 
SDEs and EDINs are introduced and processed (as per 
before) to produce different and currently incompatible 
views of the same atoms of data. 
ASSOCIATIVE PROCESSING 

The next cornerstone of BOSS is associative processing. 
As mentioned above, a Bond in a given EDIN identifies a 
native BOSS process associated with the Attribute of that 
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10 
EDIN, and possibly involving the Subject of that EDIN. In 
a BOSS environment, it is possible to automatically estab 
lish and execute new associated processes, based on a given 
information set. As a simple example, consider the two 
EDINs given as 902 in FIG. 9, which is a block diagram that 
illustrates associative processing according to the present 
invention. Based on these EDINs, the BOSS process is able 
to automatically derive and store the third EDIN 904. From 
then on, the item “X” has direct relationships with both “Y” 
and “Z”. Note that the derived EDIN 904 can only be 
assumed to be correct when the relation is transitive in 
nature (i.e., X BOND Y=Y BOND X). For example, the 
“brother of relationship is transitive, while “father of is 
not. Aside from simple association, BOSS can derive asso 
ciations whose correctness is not absolute. Consider the 
EDINs given as 906 in FIG. 9. Possible automatic deriva 
tions are shown as the EDINs 908. Such proposed EDINs 
can then be automatically checked for correctness by gath 
ering all data about “A” and “C” and then performing an 
exhaustive cross check to establish one of the following 
general results: 
Not enough data 
The correct and incorrect EDIN(s) 
Since EDINs with any contents and purpose can coexist 

in a given module, it is possible to automatically derive new 
relationships and associated processing and store such new 
information in the same module, thereby expanding the 
InfoFrame of BOSS on an automatic and dynamic basis. 
HARDWARE EVOLUTION 
The principles of BOSS outlined thus far are hardware 

compatible concepts. It is possible to reduce the vast major 
ity of BOSS operators directly into hardware. Indeed, most 
of the BOSS operators and the Endo-Dynamic Processor 
have been designed such that they can be converted (or 
evolved into) hardware. 

This simple fact renders BOSS one of the most powerful 
data organization approaches in existence. Besides being 
able to operate two to three orders of magnitude faster than 
conventional data organization approaches when imple 
mented in hardware, BOSS is infinitely more flexible. 

Based on the evolution of hardware devices, the demand 
for order of magnitude solutions is greater than ever. Further, 
the existing approaches to solving the increasingly complex 
data organization, migration and integration issues are being 
limited by the engines used. 
The BOSS methodology also promises interesting 

advances in CPU design. Consider that a UEI can also be a 
machine code mnemonic. A natural result of this fact is that 
the data of an EDIN can also be a program, under the correct 
circumstances. Further, it is possible to also create process 
ing actions based on the binary relation found in an EDIN. 
COMPONENTS 

Unless specified otherwise, when any component or list is 
stored to file, a number of operations occur. First, a check 
sum of the component is calculated. Next, the checksum, 
followed by a size (or number of records) is stored at top of 
file. Finally, the component is saved. Loading performs the 
reverse actions. 
UNIVERSAL ENTITY IDENTIFIER (UEI) 

FIG. 10 is a block diagram that illustrates the structure of 
a Universal Entity Identifier (UEI), which is the heart of 
information location and identification in BOSS methodol 
ogy. A UEI contains two fields to provide a universally 
unique location for a physical body of data. These are the 
Site Owner Identifier (SOI) and the Site Entity Identifier 
(SEI). The SOI is the serial number of the EDP operating at 
a given site or some other unique identifier for an EDP. The 
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SEI is a unique incremental number per site, where the SEI 
is assigned and incremented each time a new data entity is 
created. An SOI and SEI together are called a Combined 
Data Identifier (CDI). A CDI combines the duties of iden 
tification and physical location into a single entity. This is 
contrary to many current methods, where location is derived 
or is cross-referenced based on a given identifier. 
ENDO-DYNAMIC INFORMATION NODE (EDIN) 

FIG. 11 is a block diagram that illustrates the structure of 
an Endo-Dynamic Information Node (EDIN), which com 
prises the elements in an EDS. The EDIN is the most atomic 
form of stored BOSS information. An EDIN is composed of 
four fields, i.e., a Subject UEI, an Attribute UEI, a Bond 
UEI, and a Sequence field. The Subject, Attribute, and Bond 
UEIs can occur in other EDINs and in other fields. For 
example, an Attribute UEI can be a Subject or Bond UEI in 
another EDIN. The Sequence field is used to enforce a 
predefined order for the EDINs in an EDS. 
EDIN COMBINATIONAL BEHAVIOR 

FIG. 12 is a block diagram that illustrates the valid 
combinations 1202 of the EDIN fields in terms of value, i.e., 
non-null, null, and “any” (i.e., could be either null or a valid 
value) according to the present invention. Since any field in 
an EDIN can contain a null value, it is prudent to specify the 
exact set of possible combinations and their meanings. 
The first and most common combination is for all valid 

EDINs which are simply elements in a set. 
The second combination is used when an item of infor 

mation is “nullified” (see below). This has the effect of 
making the Attribute item inaccessible in all non-edit BOSS 
processes. 

The last two combinations are shown for completeness. 
These combinations, and all others not shown by FIG. 12, 
are illegal and invalid occurrences of EDINs. 
NULLIFIED EDINS 
As shown in FIG. 12, if the Attribute of an EDIN has a 

null value, it is called a Nullified Subject Node (NSN), 
where the Subject of a NSN is the item being nullified. When 
a NSN is created, all EDINs with the same Subject and all 
the EDINs with the same Attribute UEI, as the NSN subject, 
are now prohibited from being including on all subsequent 
EDS generations. This has the effect of hiding information, 
or hiding a particular section in an organization. To remove 
a nullification (un-nullify), the NSN is simply removed from 
a module. Now, all previously invisible items or hierarchy 
branches are made visible again. 

The NSN is strictly optional and it’s presence or absence 
does not invalidate or limit the working of BOSS method 
ology. If used, NSNs can augment BOSS with an informa 
tion hiding capability. 
BOND 

The third EDIN field is a Bond UEI value. This ensures 
that Bonds are universally unique. A Bond value identifies a 
process where processing occurs based on an interpretation 
of the EDIN Attribute field; these include a noun, verb, 
adjective, adverb, action, action-sequence, etc. In all cases, 
the Bond is known to be between the Subject and the 
Attribute. 

FIG. 13 is a block diagram that illustrates the structure of 
a Bond Information Record (BIR), which records Bond 
information. A BIR has three fields. The first is a Bond to 
provide a key in the Bond Information Table (BIT). The BIT 
is a list of BIRs sorted by the Bond field. As shown in FIG. 
14, the BIT is stored at the InfoFrame level. The second field 
of the BIR is a flag to describe the basic properties of the 
Bond. The last field of the BIR is UEI which identifies the 
associated process to be executed (by the EDP). This is most 
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12 
often an EDO, but can also be a major subsystem of the EDP 
which handles this and other similar bonds or a BOSS 
program. The images and any default values for bonds are 
stored in the IMAGE-ETS and DATA-ETS at the InfoFrame 
level. 
As shown in FIG. 15, the Bond Flags field in the BIR 

gives the properties of the Bond, as follows: 
Active/Passive 

Active Bonds institute immediate processing and inter 
rupt the active process flow until they are terminated. 
Passive Bonds are relations which make a statement of 
fact or existence; they do not instigate immediate 
processing, but are used in the various BOSS processes 
to generate and process EDS’s. 

Operator 
This flag indicates that the Bond is an EDO. Although 

redundant, EDOs are also Bonds recorded twice. The 
UEI for the EDO Bond is identical to the EDO UEI 
given for that EDO in the Operator IT (forces active as 
flag enable). 

Call 

This flag indicates that the Bond is a BOSS process 
including a SDE, BOSS program, EDP command list 
(forces active as flag enable). When this flag is off, the 
associated process is assumed to be an OS binary 
program. 

Spawn 
This flag indicates that a non-BOSS process is to spawn 

concurrently or multitask (forces active as flag enable 
and call flag disable). 

User/Native 
This flag indicates whether the Bond is a native Bond as 

supplied by the EDP, or a Bond created by other person 
or process. Whenever a Bond is created, this flag is set 
to User, since any native Bonds would be supplied by 
the EDP or shipped as upgrades. 

In order for Bonds to make sense to a user, not only do 
they have to have names, but also some form of organiza 
tion. The names/images for all Bonds are stored in the 
IMAGE-ETS, using the Bonds as the search key. 

In order to provide organization, the Bond Organizational 
Record (BOR) is used. A minimal form of the BOR is shown 
in FIG. 16. This BOR contains only two fields, a SELF and 
a RELATED Bond. Using this simple record, almost any 
logical organization of Bonds can be achieved. 
As shown in FIG. 17, anything from a multi-level tree 

1702 to a simple list 1704 is possible. Depending on the 
running process, different logical structures can be adopted. 
A Bond value should always occur in the Bond EDIN 

field. Consider a bond UEI which is recorded as a subject or 
attribute of an EDIN, with some other Bond value in the 
EDIN bond field. When this EDIN is processed, the bond 
recorded as subject or attribute will behave as a subject or an 
attribute, and not as bond. This can cause errors in EDP 
processes and clients which require and recognize the 
subjected/attributed bond for their critical processing. 
ENDO-DYNAMIC SET (EDS) 
Any dynamically generated or simply loaded list of 

EDINs is an Endo-Dynamic Set (EDS). An EDS always has 
a particular purpose and meaning, as known only to the 
process using the data. For example, an EDS generated from 
a program module could be a program data structure, a 
program data occurrence, or a procedure occurrence. The 
EDINs in the EDS also may be or may not be ordered, 
depending on the requirements of the data being represented 
by the EDS as a whole. 
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EDS's are identified by UEIs, but for the most part, this 
is done indirectly and not in the same manner as other 
entities. The UEI associated with most EDS’s is actually the 
identifier for a Set Definition Equation (SDE). Given any 
module, the SDE can be used to (re)produce an EDS with the 
same exact membership conditions and potentially different 
elements. Instead of storing the distinct EDS’s present in a 
module, only the equations (SDEs) need be stored. This is 
required to ensure EDS's generated via SDEs remain 
dynamic at all times, and is somewhat smaller since set 
elements need not be duplicated. Since an SDE is itself 
implemented as an EDS, it is necessary to store the SDE 
EDS in the same module. 
BASIC EDIN SEQUENCES 

Information can be generally categorized as being active 
or passive. In this view, EDIN sequencing in an EDS takes 
one of two basic forms: active sequence and passive 
sequence. An active sequence is always an executable pro 
cess of some form; a passive sequence always expresses the 
structure, existence, qualities, properties, values, etc., of 
some information. Put differently, an active sequence per 
forms some activity, while a passive sequence provides data 
about some information. Further, BOSS methodology 
allows for any combination and number of occurrences of 
both kinds of EDIN sequencing in the same EDS. However, 
this would involve overhead processing, and the availability 
of a client program to process the passive sequences. Some 
passive sequences have associated native processes which 
handle or drive those particular kinds of passive information 
required for BOSS operations. In both cases, the EDIN 
sequence field is used to establish the EDIN order. For active 
sequences, the EDIN sequence value starts from zero and 
goes up to the number of required EDINs, where an EDIN 
sequence value is never duplicated in an active sequence. 
For passive processes, the EDIN sequence may or may not 
be required, depending on the information being represented 
by the passive sequence. For example, if the passive infor 
mation comprises files maintained hierarchically in 
directories, which exist in volumes, the sequence field is not 
required. However, if the passive information is a data 
structure definition, with elements in some depth, the 
sequence fields are used to order the elements of the struc 
ture. The only EDIN sequence value which can be dupli 
cated in a passive sequence is a “null” value. 
To express an active sequence, one or more Endo 

Dynamic Command Lines (EDCL) are used, where the 
order of the EDCLs, as established by the EDIN sequence 
fields, embodies the required active sequence. To express a 
passive sequence, one or more Endo-Dynamic Information 
Statements (EDIS) are used, where the EDINs may or may 
not be ordered by the EDIN sequence field. 
ENDO-DYNAMIC COMMAND LINE (EDCL) 
The BOSS central process, the EDP, takes command lines 

as input. An Endo-Dynamic Command Line (EDCL) is 
dynamic in nature, and variable length. The basic EDCL 
1802 is shown in FIG. 18. First, any number of EDINs bond 
any number of parameters to a subject identification, the 
subject being an EDCL 1802. Then, an EDIN bonds the 
EDCL 1802 (same subject) to an executable entity, shown as 
“XXX”. The EDINs are ordered by the sequence field to 
place parameters before the execution occurrence. The 
executable entity XXX could be an endo-dynamic operator, 
a BOSS process (including SDE, BOSS program, activation 
list, etc.), or an OS executable program. 
EDOs form the “instruction” set available from the EDCL 

1802. EDO EDCLs 1802 are the fastest to execute, and 
require the least amount of overhead processing. A BOSS 
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14 
process is any ordered list of EDCLs. This could be an SDE, 
a BOSS interpreted program, an activation list for an Info 
Base or InfoFrame, etc. An OS executable program is 
externally executed and requires the most amount of over 
head processing. 
The EDCL 1802 differs from conventional command 

lines in several ways. Clearly, the EDCL 1802 is variable 
length in that any number of parameters are possible. The 
EDCL 1802 is also dynamic, in that parameter and execute 
EDINs (all EDINs for an EDCL 1802) can be changed 
dynamically, and the EDCL re-executed. Note that the 
EDCL 1802 trigger for the EDP is the Bond field of the 
EDINs, not the subject or attribute fields. This is an impor 
tant aspect of BOSS methodology. Using the Bond as a 
trigger means that, in EDCL 1802 processing, information 
subjects and attributes can occur freely and without affecting 
the process flow. 
The EDCL 1802 forms the basis of BOSS processing. 

Using combinations of EDCLs 1802, any process what so 
ever, using any kind and number of parameters, can be 
accurately recorded and executed. Using the generic EDCL 
1802 enables all BOSS clients to dynamically create and 
modify any kind of EDCL group, and then have it executed 
and re-executed by the EDP. As should be obvious, the 
EDCL 1802 provides a simple and powerful way of 
implementing, maintaining and executing genetic algo 
rithms. Many of the EDP initialization, and default infor 
mation processes, are expressed and stored as an ordered list 
of EDCLs 1802. Any ordered list of EDCLs 1802 is referred 
to as an Endo-Dynamic Command Set (EDCS) 1804. 
ENDO-DYNAMIC INFORMATION STATEMENT (EDIS) 
An Endo-Dynamic Information Statement (EDIS) is two 

or more EDINs which make a statement of fact about some 
subject. The basic EDIS 1902 is shown in FIG. 19. In this 
figure, several attributes are bonded (possibly via different 
bonds) to the same subject “A”. When order and hierarchy 
are required for the information, an EDIN attribute UEI 
(shown as “B”) occurs as the subject of other EDINs, whose 
attributes further describe the UEI (i.e., “B”) originally 
occurring as an attribute of a subject. 

This is an important aspect of BOSS methodology. The 
interchangability of the subject and attribute UEIs means 
that any depth and breadth of information hierarchy can be 
achieved. Further, upward or backward links can be intro 
duced into the information hierarchy, such that a workable 
information network/graph is achieved. 
The EDIS 1902 is dynamic in nature, so that the expressed 

passive sequence is a dynamically established one. Since 
EDINs can be freely inserted into an EDS, and the EDS 
reordered, any information represented as a passive 
sequence remains dynamic. In the example shown in FIG. 
19, the EDIN sequence fields are not used. However, many 
passive sequences require this field to establish order among 
the EDINs. Any passive sequence of EDINs is called an 
Endo-Dynamic Statement Set (EDSS) 1904. 
DATA AND IMAGES 
So far, all information has been referred to in terms of 

UEIs. While the UEI does provide all required information 
about an entity to a process, it means little to an end-user. For 
example, while a program can process and maintain an EDS 
identified by the UEI value “112:10”, it would be pointless 
for that program to display those numbers to an end-user. 
Clearly, names and/or images must be associated with each 
unique entity, so that a program can use them in its display 
interface. Hereafter, “image” refers to both a binary image 
and a name-string. 
Aside from an image, an entity (as represented by an 

EDIN), may also have associated physical data. For 
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example, a BOSS-applied database program would use 
EDINs to record logical relationships and groupings, but it 
could not directly use EDINs to store the different data 
values being maintained by the database. 

Both images and physical data are examples of Variable 
Length Data (VLD). To maintain and store VLD in general, 
a format called “Expandable Table Set” is used. 
As shown in FIG. 20, an Expandable Table Set (ETS) 

2002 is a file or memory pair, consisting of an Expandable 
Table Array (ETA) 2004 and an Expandable Table Compos 
ite (ETC) 2006. The ETA 2004 and ETC 2006 must exist 
together or not at all. The ETA 2004 is a sorted list, where 
each element is an Expandable Table Record (ETR) 2008. 
Each ETR 2008 identifies information about (and the loca 
tion of) an Expandable Table Block (ETB) 2010 within an 
ETC 2006. As shown in FIG. 21, the ETR 2008 is a record 
containing a UEI key, a flags field, an ETB size, an ETB 
checksum and an ETB file address. The ETRs 2008 in the 
ETA 2004 are sorted based on the UEI key. The ETC 2006 
is simply a binary dataset composed of a number of variable 
length ETBs 2010, in any order. 
To find an associated piece of VLD, a binary search is 

performed of the ETA 2004 for the input UEI. The UEI 
comparison is binary, so if any field of a subsequent input 
UEI is different, a different associated VLD occurrence 
exists. Since the ETA2004 is ordered by UEI value, one ETS 
2002 can be used to store all VLDs of all data. Where two 
or more VLDs are required for a single UEI, separate ETS’s 
2002 must be used. 
As shown in FIG. 20, each ETA 2004 contains an Expand 

able Table Array Header (ETAH) 2012 at the top, followed 
by the actual ETA 2004 (list of ETRs 2008). As shown in 
FIG. 22, an ETAH 2012 contains: a flags field, a self-ETS 
UEI, an ETA size (number of ETR's) an ETA CHECKSUM 
field to enable verification of the ETA file upon loading an 
ETC size, an ETC CHECKSUM field to enable verification 
of the ETC file upon loading, an ETA memory address, an 
ETC memory address, an ETC buffer size, a current starting 
ETR identifier, and a current last ETR identifier. 

Through usage, VLDs will come and go in a system. That 
is, when entities are deleted, their associated VLDs are also 
deleted. This would leave holes of unused space between the 
used ETBs 2010 of an ETC 2006. Fortunately, the process 
to optimize an ETS 2002 is trivial. First, a temporary ETC 
2006 buffer is allocated. Then, starting from the first ETR 
2008, and by keeping a current pointer, all valid ETBs 2018 
are copied, back-to-back, into the temporary ETC 2006. To 
finish, the ETC 2010 is overwritten with the temporary ETC 
2006 buffer and the temporary ETC 2010 buffer is 
de-allocated. 

If memory is scarce, the optimization can be performed 
using a buffer as large as the largest ETB 2010. In such 
cases, ETBs 2010 would be swapped (using unused holes) 
until they are in a back-to-back order. Unlike the first 
scheme, using a single ETB 2010 buffer, the ETBs 2010 in 
the resultant ETC2006 may not be ordered in the same order 
as the ETRS 2008. 

Since a BOSS element can have an image and have 
associated physical data, two ETS’s 2002 are used for each 
element. FIG. 20 also shows the minimum set 2014 of ETS’s 
2002 required at any level to enable BOSS VLD mainte 
IläIl Cè. 

INFOFRAME 
FIG. 14 illustrates the components 1402 of the Informa 

tion Frame (InfoFrame), which represents the highest level 
of logical and physical data organization in BOSS. The 
InfoFrame is a definition of the collection and usage of all 
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InfoPases found at a site, and other sites that may be 
connected to the home site. 

FIG. 23 illustrates the components of an InfoFrame Con 
trol Record (IFCR), which is contained in the InfoFrame to 
describe the default InfoPase processing, if any, for a site. 
The IFCR contains a Local Name UEI field to provide a 
local name for the InfoFrame known to the current site that 
is used as key into the IMAGE-ETS for the InfoFrame (at 
this site) A Flags field is used to record InfoFrame process 
ing configurations. An SOI field recorded from the serial 
number of the installed EDP is used to create all UEIs 
generated at the current site. A Next SEI field is used to 
provide the next available SEI value across the current site, 
and this value is incremented, once read, by the EDP 
processes which create UEIs. A Modifiers field is used to 
provide operational thresholds and guidelines for the 
InfoFrame, wherein these modifiers are: OLDEST VALID 
EDS, START TIME, EDS MODIFY OCCURRENCES, 
STOP TIME, and EDS MODIFY FREQUENCY, 
To absolutely determine when EDS’s require 

regeneration, it would be required to examine each EDIN in 
each EDS, to determine all possible EDS's which that EDS 
is dependant upon (in some way). Clearly, this is a time 
consuming and an infeasible methodology to adopt. Instead, 
the OLDEST VALID EDS is used. This is a time scalar, 
indicating how old a valid EDS can be. If this is a low 
number, EDS's are quickly deemed invalid and in need of 
regeneration. If a high number, generated ElDS’s are 
deemed valid for long periods of time. 
While the EDP can record occurrences when distinct 

changes are made to individual EDS's or SDEs, this fact is 
not enough to estimate when an EDS requires regeneration. 
For this reason, the OLDEST VALID EDS value is used. 
While this number can be assigned, an End-Dynamic 

Operator, “DETERMINE-OLDEST-VALID", can be used at 
any time to automatically determine a value for this number. 
The START TIME, and the three modifiers EDS MODIFY 
OCCURRENCES, STOP TIME, and EDS MODIFY 
FREQUENCY, are used by the DETERMINE-OLDEST 
VALID operator. When first initiated, this EDO records the 
START TIME, sets the EDS MODIFY OCCURRENCES to 
zero, and enables the RECORD MODIFY flag in the IFCR 
flags. This flag indicates that each subsequent EDS modifi 
cation requires an increment of the EDS MODIFY OCCUR 
RENCES modifier. Finally, this EDO prompts for a time 
duration, and records a STOPTIME. At the appointed stop 
time, the EDS MODIFY FREQUENCY is calculated based 
on the other assigned/accumulated modifiers. This fre 
quency is then used to determine an estimated OLDEST 
VALID EDS value. 
The InfoFrame also contains a Default InfoPase List 

(DIL), whose elements are EDINs and which comprises an 
EDCS. FIG. 24 shows an example DIL 2402 with three 
EDCLs. First, for each parameter required for an InfoPase 
activation, an EDIN occurs. No parameter EDINs are 
present if the InfoPase requires no parameters. After the 
parameter EDINs, the last EDIN associated with the Info 
Base occurs, where the “activate InfoPase” EDO performs 
all tasks associated with locating and activating a particular 
InfoPase. 
A Default Module List (DML) is used in the InfoFrame, 

whose elements are EDINs. The DML is an EDCS, exactly 
as the DIL2402, except that the EDIN subjects are all a UEI 
generated for the InfoFrame DML. The InfoFrame-DML is 
used and loaded before the DIL 2402, and InfoPase DMLs. 
This enables the EDP to load native modules which may 
have a hand in loading and activating InfoPases. 
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The InfoFrame also contains an InfoPase definition List 
(IBDL), where each element is an IBDR. The IBDL is 
frequently updated to ensure any newly added InfoPases are 
included. The InfoFrame contains Data and Image ETS’s to 
record such data associated directly with the InfoFrame. The 
InfoFrame contains an Operator Information Table (OIT), to 
identify and describe all Endo-Dynamic Operators. The 
InfoFrame contains one or more EDO program files, each 
containing the executable code for one or more operators. 
The InfoFrame contains a Parameter ETS, to describe all 
parameters for all EDOs. The InfoFrame contains a Bond 
Information Table to describe all bonds. The InfoFrame 
contains a Default Command List (DCL), to provide a 
“default dynamic program” which EDP always (and possi 
bly continuously) executes. 
INFOBASE 

FIG. 14 illustrates the structure of an Information Base 
(InfoPase), which is a conglomeration of one or more 
information modules. An InfoPase Definition Record 
(IBDR) is used to provide image and processing options for 
the InfoPase. An IBDR file exists for each InfoPase for 
import/export purposes. All regularly used IBDRs are stored 
on an InfoFrame basis. 
As shown in FIG.25, the IBDR is composed of: a FLAGS 

field to provide processing switches, a self-UEI field to 
uniquely identify the InfoPase, and an image-UEI field to 
provide a key into the InfoPase assigning an image for the 
InfoPase. The Flags field is identical to the one in the IFCR. 
A Module Definition List (MDL) is used to provide a list 

of included modules in the InfoPase. Each element of the 
MDL is an MDR as described under module section. 
A Default Module List (DML) is used for the InfoPase 

structured exactly as the DML stored at the Info?rame level. 
The following modules identified by the InfoPase DML 

are loaded and activated upon InfoPase activation. The Data 
and Image ETS’s are used to record such data associated 
directly with the InfoPase. 

Modules can be included in an InfoPases in two ways: 
shared, and exclusive. A shared module physically occurs 
once across all InfoPases in the current InfoFrame, but may 
be included in all Infosases. In a BOSS-applied environment 
where concurrent processing is possible, the usual precau 
tions and preprocessing must be applied before access is 
granted. An exclusive module is what all modules are by 
default, one that is exclusive to a particular InfoPase. An 
exclusive module only appears in the InfoPase it is exclu 
sive to. While other InfoPases can access an exclusive 
module, any such access is regulated by the owner InfoPase. 
An InfoPase can store a large amount of data and pro 

cessing. In general, an InfoPase will have one or more 
modules containing data in one or more data organizations, 
and one or more modules containing programs which pro 
cess that data. The modules containing programs which 
process that data are optional, in that the programs that 
process the BOSS data need not be written as BOSS 
programs; they could be any binary program. 
MODULES 

FIG. 14 illustrates the structure of an Information Module 
(IM), which is a collection of EDINs and ETS’s to record the 
associated images and physical data. The minimum set of 
required ETS’s is used as described in the previous section. 
These ETS’s store all images and data for the module as well 
as for all EDINs in the CNL. When saved EDS's are present, 
images associated with saved EDS’s are also stored in these 
ETS’s. 
A Collective Node List (CNL) stores all EDINs, in 

arbitrary order, which together make up all the EDS’s which 
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can be generated from that module. The CNL is always 
loaded upon module activation. Most EDS generation opera 
tors require the specification of one or more modules to use 
as a source of generation; in such cases, all associated CNLS 
must be loaded (in turn) and used as a source for generation. 
A Set Definition List (SDL) maintains a list of “saved 

EDS's". Each element in the SDL is a Set Definition Record 
(SDR). As shown in FIG. 26, each SDR contains a self 
identifier UEI field identifying the EDS, a GENERATION 
PROCESS UEI field, a Flags field, a LAST-GENERATION 
field, an EDS size field, and a memory address. The LAST 
GENERATION and memory address fields are only used at 
runtime, after the EDP has loaded a particular module, and 
provide the current location and size of an EDS in memory. 
The GENERATION-PROCESS UEI identifies a process 
which will generate the EDS; this can be either an SDE, or 
another process. The LAST-GENERATION field is also 
only used at runtime; it is a date and time stamp of the last 
generation. This field provides a measure of how valid or up 
to date the EDINs pointed to by EDS address fields are. This 
field is compared to (current time—oldest valid eds), and if 
older, the associated EDS is deemed to be invalid and in 
need of regeneration. The SDR flags field is used to record 
which EDS’s are temporary and which are not. Further, it 
identifies whether the EDS generation process is an SDE, or 
other process. All newly generated EDS’s are by default 
temporary. Using EDOs, a newly generated EDS can be 
made permanent, or a generation process can be made to 
result in a permanent EDS. 
When an EDS is saved to a module, only unique EDINs 

are added, or old EDINs updated in the CNL, EDINs are 
never duplicated in the CNL. Next, the EDINs which make 
up the equation (SDE) used to generate the EDS, are also 
added to/updated in the CNL. Finally, the UEI for the SDE 
is added to/updated in the SDL. Now, upon subsequent 
module loading, a client can first re-generate the SDE, then 
execute the SDE to regenerate a (new version of a) previ 
ously saved EDS. 
When a new EDS is dynamically generated, a new unique 

UEI is assigned to it, and a new SDR created in the SDL. 
The self-identifier field of the new SDR is assigned from the 
newly created UEI value. All SDR flags are cleared, the last 
generation date is set, and the EDS size and address fields 
assigned from the newly generated EDS buffer. The SDE is 
set from the LAST-SDE global variable; this variable is 
cleared in each EDP cycle, and is set by the last line of any 
SDE. As a result, it can be used by the EDP processes to 
determine the associated SDE (or NULL for none). 
As shown in FIG. 27, the Module Definition Record 

(MDR) provides a UEI for the module image (stored in the 
module ETS’s), as well as default processing flags for a 
module. These are the same flags as for the IFCR and IBDR. 
The MDR for a module is always stored in a separate file; 
this file is only used when importing or exporting modules. 
The MDR in this file (along with all other modules used by 
an InfoPase) are duplicated in the Module Definition List as 
defined for an InfoPase. So, in reality, the MDL contains the 
latest version of all MDRs, and when import/export is 
required, the MDR file is generated and used. This is done 
to avoid potentially long update periods every time a module 
is modified in some way, and poses no problems because the 
MDR file is not used in regular processing; only for import/ 
export. 
A Default EDS List (DEL) is used, where each element is 

a UEI identifying an EDS to generate (i.e., identifying an 
SDE/process to execute). All default EDS’s are generated 
upon module loading. 
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The IM is a self-contained package of information, pro 
viding values, images, data organization(s), data association 
(s), and data processing. The IM is always constructed to 
serve the needs of a client BOSS process. Since an EDS can 
always be dynamically generated from a CNL, it is possible 
to place incongruent or inconsistent information in the same 
module; although this is not recommended, it poses no 
problems to the BOSS environment, and values, 
organizations, and associations remain unaffected. Some 
module examples follow: 
A BOSS program, where procedures, data-structure 

definitions, and data occurrences are recorded, and later 
generated as, EDS’s, which are processed by either the 
EDP or a client BOSS program interpreter to run a 
program. 

A BOSS menu system, where menus are recorded, and 
later generated as, EDS’s, which are processed by the 
BOSS menuing client. 

In general it is best to group information common to the 
same compound information entity in the same module. 
While out of context EDINs in a module do not create 
problems by themselves, out of context SDEs and EDINs 
would create potentially fatal processing problems. For 
example, consider an out-of-context SDE which generates 
an EDS for a data structure definition by default, for a 
module whose purpose is menuing. This would more than 
likely hang the menuing client. For these reasons, a BOSS 
client can construct SDEs which “filter” all input EDINs for 
consistency. Such SDES can check for particular types and 
allows and disallow the input. So if the module is a menuing 
system, data types like “procedure” could be optionally 
disallowed. 
SET DEFINITION EQUATION (SDE) 
As mentioned above, EDS's are based on Set Definition 

Equations (SDEs). An SDE is an expression composed of 
Endo-Dynamic Operators (EDOs) and operands. An Endo 
Dynamic Operator (EDO) can be almost any kind of opera 
tor. FIG. 28 shows an example SDE 2802 with a C-like 
format. A new EDS called MY-EDS will be the result of 
resolving the right hand side of the equation. The atomic 
binary SDE units are shown and numbered 1, 2, and 3 from 
the deepest to the outermost SDE unit. The SUB, SEQ, and 
ATT mnemonics are EDOs that perform filtering based on 
different fields of the EDIN. The INTERSECT mnemonic is 
a logical EDO and signifies that the resultant sets of both 
operand expressions must be intersected. The expression 
shown in FIG. 28 dictates that all EDIN’s in the “MY-EDS” 
EDS will have a Subject equal to “W:X:” and an Attribute 
equal to “A:B:”. The “MODULE-N” module is the module 
used here for all operators, except INTERSECT. 

The SDEs are always binary in nature. No matter how 
complex the equation, it can always be broken down into 
binary (and unary) SDE-units. As a result, an SDE is easily 
implemented as an EDS. 
FIG.29 shows an EDS 2902 for the SDE depicted in FIG. 

28. This shows the Subject and Attribute fields of the EDIN 
as UEIs. This EDS 2902 also shows the Bond and sequence 
field values. As can be seen in FIG. 29, the SDE is simply 
an EDCS. In this case, these EDCLs are shown, i.e., one for 
each EDO showing in FIG. 28. 

In this way, an EDS 2902 can be used to store equations 
(SDEs) which define how other EDS's are dynamically 
generated. The subject fields of all EDINs will always 
contain a unique SDE-UEI associated solely with MY EDS. 
The SDE by itself does not result in anything. But when the 
SDE is applied to an existing ED)S or module, a new EDS 
can be generated. As a result, a single module, with multiple 
SDEs, can provide different dynamically generated EDS’s. 
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ENDO-DYNAMIC OPERATOR (EDO) 
As mentioned above, Endo-Dynamic Operators (EDOS) 

are to the Endo-Dynamic Processor (EDP) as instructions 
are to a processor. An EDO is any executable body of code 
requiring any number and type of parameters. While the 
code for most EDOs is in the form of a binary executable OS 
program (or procedure), EDOs expressed as EDCS’s can 
also be created and used. As should be obvious, an EDO 
occurrence with all its required parameters forms a complete 
EDCL. So it is possible to construct an EDO and EDCL, 
such that the EDCL activates the EDO (via the EDP), 
wherein the EDO is itself an EDCS processed by the EDP. 
This forces the EDP to be re-entrant, where the EDP must be 
capable of correctly processing any number of EDCS’s in as 
many streams of processing as initiated by various pro 
CèSS?S. 

Unlike conventional “instructions”, the EDO is not lim 
ited in size or complexity. The EDO can be anything from 
a one line procedure to a whole system (program). Further, 
EDOs can freely call each other without interfering with 
EDP process leveling or the EDP stack. 

Incorrect process streams which are potentially fatal are 
terminated, mostly before and sometimes after a fatal pro 
cess error has occurred. All stack data regarding the process 
(es) which were involved in a process stream resulting in the 
fatal error(s), can be safely and accurately removed from the 
EDP stack, such that pursuant EDP processing, and other 
existing processes can continue. 

For each EDO available for use, there exists an Operator 
Information Record (OIR). As shown in FIG. 30, each OIR 
contains: an OPERATOR UEI field to provide a key in the 
OIT, a NUMBER OF PARAMETERS field to give the total 
number of input and output parameters required by the 
operator (the number of PDRs in the associated list), an 
Endo-Dynamic-Library UEI to identify the library that con 
tains the executable code of the EDO, and a CALLING 
ADDRESS field to provide a memory address for the 
operator that is only valid at runtime after the operator’s 
executable code has been loaded into memory. The OIRs are 
used at run time to verify calls to, and execute operators. As 
shown in FIG. 14, all OIRs are permanently maintained in 
the Operator Information Table (OIT), maintained at the 
InfoFrame level. The OIT is a sorted list, wherein a binary 
search locates a given OIR. The OIT is updated when EDOs 
are imported or modified. 
To record parameter data requirements for EDOs, the 

PARAMETER-ETS is used. As shown in FIG. 14, this ETS 
is stored at the InfoFrame level. The ETRs in this ETS have 
EDO UEIs as the keys. The ETBs store ordered lists of 
records, where each record is a Parameter Definition Record 
(PDR). As shown in FIG. 31, a PDR contains: a Flags field 
to identify general I/O type of the parameter, a Data Type 
field to identify the required data type to internal BOSS 
processes, a Data Size field to give the size of the identified 
data type, a Type Image UEI field that identifies an image for 
the data type stored in the InfoFrame IMAGE-ETS and a 
Default Value UEI field that points to a default value 
occurrence for the parameter in the InfoFrame DATA-ETS 
(if no default value is supplied, this field contains a null 
UEI). Both the OIT and the Parameter ETS are used at run 
by the EDP to perform verified dynamic entry and execution 
of EDCLs. 
EDO-INFOBASE 
An Endo-Dynamic Library (EDL) is an Information Mod 

ule which provides a means for transporting and storing all 
information regarding a given set of EDOs. All EDOs in an 
EDL should be related in some general way; this is often 
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(part of) the name for the library. Note that hereafter and 
throughout the document and figures, “Library” is used 
interchangeably with “EDL”. 
A strictly logical entity called Endo-Dynamic Group 

(EDG) is used to organize all EDLs in various ways. Note 
that hereafter and throughout the document and figures, 
“Group” is used interchangeably with “EDG”. 

All EDLs are collected by the Endo-Dynamic Operator 
Infobase (EDO-InfoPase). The EDO-Infobase is an Info 
Base like any other, but also encompassing any additional 
program files required by the EDLs. The EDO-InfoPase 
provides a way of accessing all available libraries and 
library information. Further, using the InfoPase DML, a 
certain base set of libraries are always activated (i.e., loaded 
and ready to be processed via EDP). The EDO-InfoPase is 
supplied with each EDP program/package, and is necessary 
for the operation of the EDP 

Whiles the OIT and the parameter ETS provide for quick 
EDP processing at the top level, the bulk of the required data 
for the EDO processing is provided by the EDO-InfoPase. 
The module components as shown in FIG. 14 are used as 
follows for a library. A library module is no different than 
any other module, except that in some cases additional 
program files are also associated with the module. 

The Module Definition Records (MDR) comprises nor 
mal module information, wherein the System flag is enabled. 
The Collective Node List (CNL) stores EDINs in no 

particular order. As well as normal SDE recording and 
processing, these EDINs are used in two ways. 

First, these EDINs are used to organize and specify EDOs 
in the library, the fields need to be set a certain way. The 
Subject field should contain a UEI for an EDL, or a UEI for 
an EDLG. The Attribute field should contain a UEI for an 
EDO. The Bond field should contain an “EDO Occurrence,” 
which indicates that there is an occurrence of the EDO given 
by the attribute in the library given by the subject. Finally, 
the Sequence field is not used. 

In addition, these EDINs are used to record EDOs pro 
grammed as EDCLs, all fields are set as per an EDCL. All 
EDINs in this CNL can be sorted by the two keys, i.e., 
subject and attribute, to provide an overall hierarchy of the 
operator groups and libraries. In addition, the CNL can be 
filtered for a particular subject (library or group) to generate 
EDS's which can be used as menus, which are then 
traversed, generated -a new menu EDS at each traversal 
step. When an EDIN in library menu EDS is selected, any 
number of further information is available for the EDO 
identified by the EDIN's attribute (e.g., PDRs, image, code, 
etc.). The client process can then perform further processing 
using the EDO information. 

The Image-ETS stores all images associated with all 
EDOs (and their parameters) in the library, as well as the 
image(s) for the library itself. 
The Data-ETS uses a UEI key. Associated with the library 

(i.e., using the module UEI), is an ETB containing a list of 
OIRs. This provides a list of all EDOs in the library. 
Associated with each EDO (i.e., using the EDO UEI), is an 
ETB containing a list of PDRs, describing the parameters of 
the EDO. 

The SDL identifies SDEs (stored in the CNL) to generate 
an EDS. For SDE-1, EDINs are sorted by the two keys: by 
subject and attribute to provide an overall hierarchy of 
operator groups and libraries. 

For SDE-2, EDINs are filtered for a particular subject 
(library or group) to generate EDS's which can be used as 
menus, which are then traversed, generating a new menu 
EDS at each traversal step. When an EDIN in library menu 
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EDS is selected, any number of further information is 
available for the EDO identified by the EDIN’s attribute 
(e.g. PDRs, image, code, etc). The client process can then 
perform further processing using the EDO information. 

For SDE-3, EDINs are filtered for a particular EDO 
subject, and sorted by the sequence. This SDE generates an 
EDCS executable by the EDP. 

For DEL, this has one default EDS: EDS for the top-level 
group. This is the same as SDE-2 above, where the source 
subject is predefined. 

If the code associated with an EDO is an EDCS, all 
EDINs required to make up the EDO’s code body are also 
stored in the CNL. If the code associated with an EDO is not 
an EDCS (i.e., if the EDO code is some form of OS 
executable code body), in addition to all normal module 
files, an OS program file is also stored. This program file has 
a filename derived from the associated EDO UEI values, 
plus the normal OS executable extension. All such execut 
able EDO program files are stored at the InfoFrame level. 
When any library information is loaded, imported, or 

modified, appropriate updates are made at the InfoFrame 
level. After any such events, the OIT, parameter ETS, and 
any EDO program files are updated as required, using the 
just saved library data. While updating the system EDO 
information is a simple procedure of replacing records and 
files, the effects of such updates on user data containing 
references to the updated operators could potentially be a 
difficult to determine and diagnose. 
LIBRARIES AND OPERATORS 
The EDP requires a minimum basic set of libraries to 

operate. These are: 
Set Filtration Library 
Control Flow Library 
Physical Manipulation Library 
The general membership requirement(s) and a minimum 

set of EDOs are described for each library by the following 
sections. In addition to any listed EDOs, any other qualify 
ing EDO can be added to a library. However, all such 
dynamically created EDOs are always tagged as “user” in 
the associated OIR. 
When EDOs are also made into bonds (a matter of 

creating bond control records, since the process already 
exists as the EDO), a viable but limited language is realized 
for defining and executing BOSS programs embodied by 
information modules, complete with data definitions as 
realized by EDS's (each is an EDS in the module) and 
executable code as realized by EDCS’s (each is an EDS in 
the module). The more evolved and/or complex EDOs that 
are introduced, the more robust such a language will 
become, but it will do so non-linearly. This is because any 
introduced EDO can call others in any (meaningful) com 
bination that it sees fit. Each added EDO increases the 
number of new possibilities combinatorially. 

Further, given sufficient numbers of added EDOs, any 
number of such dynamic programming languages are simul 
taneously possible, where languages can interface invisibly 
to any of the involved specific language processes. Any and 
all such languages are simply an implementation of several 
BOSS concepts and the specific usage of several BOSS 
entities disclosed in this patent. 
SET FILTRATION LIBRARY 
An EDO in this library must process EDIN list(s), based 

on any kind of input, to produce subsets of that EDIN list, 
or new EDIN list(s). The minimum required set of filter 
EDOs are described below. The EDOs listed below consti 
tute the minimum required set of EDOs in the filtration 
library: 
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Union 
This EDO combines two or more input EDS’s into a third 

output EDS. 
Intersection 

This EDO examines two or more input EDS's for com 
mon EDINs and outputs a third EDS containing only the 
common EDINs. 
Subject-Match 

This EDO searches the input EDS for EDINs having a 
match in their subject field with an input subject and returns 
those EDINs in FL new EDS. 
Attribute-Match 

This EDO searches the input EDS for EDINs having a 
match in their attribute field with an input attribute and 
returns those EDINs in a new EDS. 
Bond-Match 

This EDO searches the input EDS for EDINs having a 
match in their bond field with an input bond and returns 
those EDINs in a new EDS. 
Sequence-Match 

This EDO searches the input EDS for EDINs having a 
match in their sequence field with an input sequence and 
returns those EDINs in a new EDS. 
Generate-Subject-Sequence 

This EDO sorts the EDINs in the input EDS by their 
subject field and then assigns sequence numbers to those 
EDINs based on their sorted order. 
Remove-Nodes 

This EDO searches for and then deletes the input EDIN 
from the input EDS. 
Descendants 

This EDO searches for any EDINs in the input EDS that 
are the descendant of the input EDIN. 
Ancestors 

This EDO searches for any EDINs in the input EDS that 
are the ancestor of the input EDIN. 
Siblings 

This EDO searches for any EDINs in the input EDS that 
are the siblings of the input EDIN. 

All of the above EDOs provide the basis for constructing 
SDEs to formulate and process anything from a simple 
database query, to data structure collection and processing, 
to evolved, multi-level queries where specific information is 
qualified to any degree and extent. Each specific application 
requiring filtration would introduce SDEs which use the 
above listed system-EDOs in various combinations with 
other EDOs to accomplish further specific filtrations. Any 
one such client procedure or program (in a client program 
module) can be made into a user-EDO, and incorporated into 
the currently known InfoFrame. Clients would create all 
EDOs associated with a general purpose in the same EDO 
library, and add the library to the EDO-InfoPase. This makes 
the client supplied EDO accessible by all BOSS clients in 
the InfoFrame. 

In this way, flexible, dynamic, and custom-made infor 
mation search engines can be built and supplied as EDOs. 
Such EDOs would be then used by even bigger BOSS clients 
such as an expert system, to unify, simplify and speed up 
minor information gathering and simple correlation tasks. 
CONTROL FLOW LIBRARY 
An EDO in this library must be associated with process 

flow of the EDP, or that of a BOSS client. The following lists 
and describes the minimum required EDOs for this library. 
Although more complex control flow EDOs are possible, 
such EDOs would simply be “implementations” of the 
technology disclosed by this patent. 
Push 
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This EDO pushes the parameters onto the EDP stack. 

Pop 
This EDO pops a value from the stack into the parameters. 

Peek 
This EDO uses a stack index number to determine a stack 

entry from the top, and return the value stored therein into 
the given parameters. 
Poke 

This EDO uses a stack index number to determine a stack 
entry from the top. Then the parameters are stored into the 
stack entry. 
Stack-Not-Empty 

This EDO returns a true or false value dependent on the 
condition of the stack. 
Stack-Full 

This EDO compares total stack space against currently 
used space and returns true or false value dependent on the 
condition of the stack. 
Execute (prog-UEI) 

This EDO locates, loads, and executes the binary OS 
program identified by the input UEI. This EDO waits for the 
program to terminate before returning. 
Spawn (prog-UEI) 

This EDO locates, loads, and spawns the binary OS 
program identified by the input UEI, as a concurrent process. 
This EDO does not wait for the program to terminate before 
returning. 
Call (prog-UEI) 

This EDO locates, loads, and executes/spawns the BOSS 
program identified by the input UEI. This EDO may or may 
not wait for the program to terminate before returning, 
depending on availability of concurrent processing in the 
environment. 
Jump (CES, NP) 

This EDO sets the global variables associated with input 
to the input values, thereby performing an unconditional 
jump to another EDCL. 
Jcond (cond-UEI, CES, NP) 

This EDO performs a jump as per the jump EDO, but 
based on a condition. The condition is a BOSS process (sets 
of ordered EDCLs), which returns true or false. In most 
cases, the condition can be automatically generated as a 
SDE. 
PHYSICAL MANIPULATION LIBRARY 
An EDO in this library must manipulate EDS’s and 

EDINs at a physical level, where a possible input parameter 
for a physical EDO is a physical memory address. Some of 
these physical EDOs are: 
Sort 

This EDO sorts the EDINs in the input EDS. 
Remove-Duplicates 

This EDO removes duplicate EDINs in the input EDS. 
Length 

This EDO determines the length of the input EDS. 
Generate-Eds 

This EDO generates an EDS for the input EDINs. 
Activate-Module 

This EDO activates the module created by the EDINs in 
the input EDS. 
Activate-InfoPase 

This EDO activates the InfoPase created by the EDINs in 
the input EDS. 
The other physical EDOs are listed and described below. 

Mostly these EDOs are combinations of calls to other EDOs 
already described. 
Load (WHAT) 

This EDO loads the input file into an allocated memory 
buffer, performing checksums, and returning the address of 
the allocated buffer. 
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Purge-Data (WHERE, DAYS) 
This EDO will irretrievably purge previously deleted 

BOSS data by deleting entries in trash files. The input 
parameter WHERE is a UEI. If the value is null, the purge 
will occur for all deleted data in the InfoFrame. If a non-null 
value, the UEI either identifies an InfoPase (find an IBDR 
matching the UEI) or a module (find an MDR matching the 
UEI). In these cases, all deleted data in the located InfoPase 
or module will be purged. The DAYS parameter is optional 
and specifies the number of days to keep deleted informa 
tion. 
Restore-Data (WHERE, DATA-UEI, DATE, DATE 
DIRECTION, AUTO) 

This EDO will retrieve previously deleted, but not purged, 
information. The input parameter WHERE is a UEI. If the 
value is null, the restore will consider all deleted data in the 
InfoFrame. If a non-null value, the UEI either identifies an 
InfoPase (find an IBDR matching the UEI) or a module (find 
an MDR matching the UEI). The DATA-UEI identifies the 
deleted data to be restored. If this value is null, all deleted 
data in the identified location is considered for restoration. 
If the DATE parameter is non-null, it is used together with 
the DIRECTION parameter to restore occurrences of quali 
fying information deleted on, before, or after a specific date. 
If the AUTO parameter is non-null, this EDO will make a 
best guess for all information restorations when duplicate 
deleted data is encountered. Otherwise, this EDO will 
prompt an operator with a choice of duplicate deleted 
information with different dates. The best guess is arrived at 
by grouping deleted data by date stamp, then restoring the 
set of data with the most recent date. 
Get-Image (UEI) 

This EDO retrieves and returns the image (or name) 
associated with input UEI, from an IMAGE-ETS. The 
search starts from current module IMAGE-ETS and expands 
to parent InfoPase and InfoFrame if not found at the module 
level. 
Set-Image (UEI, IMAGE) 

This EDO retrieves and returns the image (or name) 
associated with input UEI, from an IMAGE-ETS. The 
IMAGE-ETS is located in the same manner as get-image 
EDO. When located, the associated ETB image contents are 
replaced with the input IMAGE. 
Create-Node (MOD-UEI, SUBJ, ATTR, BOND, SEO) 

This EDO creates a new node in the input module’s CNL, 
using the given input parameters to set the node's fields. The 
sequence field can be supplied as “null” when not required. 
This is how information is added to BOSS at it’s most 
primitive level. This process can be triggered from any 
environment, so long as the UEIs provided are valid, or will 
have meaning. 
Delete-Node (MOD-UEI, NODE) 

This EDO moves all EDINs in the CNL associated with 
input module, which are binary-equal to the input EDIN, 
NODE, to an associated trash CNL. 
Create-Eds (MOD-UEI, POINTER, COUNT) 

This EDO receives a memory address, POINTER, to start 
of a list of EDINs in (some) memory. This is NOT an active 
EDS at this time. Also receives a COUNT to indicate the 
number of EDINs in the list. This operator creates a new 
active EDS (not stored) containing the list of EDINs, and 
returns a newly assigned UEI value. This operator is useful 
for processes that either automatically or via user input, 
create EDINs from scratch. The new EDS is always added 
to the CNL associated with an existing module identified by 
input MOD-UEI. 
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Add-Eds (MOD-UEI, POINTER, COUNT) 

This EDO receives a MOD-UEI to identify a CNL to add 
nodes to, as well as a memory address, POINTER, to start 
of a list of EDINs, and a COUNT of those EDINs. The given 
EDINs are then added to the identified CNL. This operator 
will not add binary equal EDINs which already exist in the 
CNL. 
Copy-Eds (MOD-UEI, EDS-UEI) 

This EDO makes a new EDS with the same contents as 
the EDS given by input EDS-UEI and returns a unique UEI 
to the new EDS. The new EDS is created in the module 
identified by the input MOD-UEI (this must exist) The EDS 
image remains the same. 
Delete-Eds (MOD-UEI, EDS-UEI) 

This EDO first generates the input EDS-UEI via generate 
eds EDO, if required. Next, it calls the intersect EDO and the 
assigns the CNL of the input module to be the resultant 
“xor-eds” (i.e., the EDS containing EDINs in the CNL but 
not in the generated EDS). The generated EDS is then added 
to the associated trash CNL. Finally, the associated SDL and 
DEL entries matching EDS-UEI are moved to the associated 
trash files, if they exist. 
Save-Eds (MOD-UEI, EDS-UEI) 

This EDO is probably the most time and space consump 
tive EDO. It assumes that an EDS (EDS-UEI) was previ 
ously generated using the generate-eds EDO and then the 
EDINs in the memory image were modified by some client 
process. At this point, the memory image of the EDS needs 
to be updated in the module CNL to reflect any changes 
made by the client process. For example, consider a module 
containing several procedures of a program. Each EDS can 
then be generated from the program module on a dynamic 
basis. Once generated, the procedure can be dynamically 
modified by a programmer. Finally, the procedure is saved 
again in the program. 

Unlike specifically deleted EDINs and data, replaced 
EDINs and their associated data cannot be recovered, unless 
steps are taken by an Endo-Dynamic Editor. 

In concurrent environments, where multiple processes can 
access the same the module, it is best to let the currently used 
Endo-Dynamic Editor handle all such issues. Being 
dynamic, the EDE can be called by a BOSS client process 
to safely load, edit, and/or save EDS’s in modules. 
Create-Module (InfoPase-UEI, NAME, FLAGS) 

This EDO creates a new module called NAME in the 
InfoPase given by InfoPase-UEI. This EDO first generates 
a new unique UEI for the new module. Then it creates an 
associated MDR in the InfoPase’s MDL, with the newly 
generated module UEI. Next, all required module files (as 
shown in FIG. 14) are created (empty except for control). 
Now the input module name is inserted in the new module 
image ETS, by creating another new UEI for the image. The 
image UEI is also stored in the new MDR. Finally, the inputs 
FLAGS are assigned to the new MDR. The module can now 
be used as a source of any physical manipulation to add data, 
and later as a source of filtration to generate new EDS’s. 
Copy-Module (MOD-UEI, InfoPase-UEI, NAME) 

This EDO first generates a new unique UEI for the new 
module. Next, all module files for module MOD-UEI are 
copied to files with the same extensions and the new UEI for 
filename. Then, a the MDR for MOD-UEI is copied into the 
MDL for the input InfoPase (InfoPase-UEI), and its self 
identifier set to the newly generated module UEI. The new 
module name remains unchanged if the NAME parameter is 
null. If NAME is a valid image, it will be copied to the newly 
copied IMAG-ETC, replacing the existing value. The image 
UEI value need not change. 
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Delete-Module (InfoPase-UEI, MOD-UEI) 
This EDO first appends the contents of all module files to 

their appropriate trash files, and then deletes all module files, 
as well as associated control records. 
Create-Infobase (NAME, FLAGS) 

This EDO creates a new InfoPase called NAME in the 
currently known InfoFrame. This EDO first generates a new 
unique UEI for the new InfoPase. Then it creates a new 
IBDR in the IBDL, with the newly generated InfoPase UEI. 
Next, all required InfoPase files (as shown in FIG. 11) are 
created (empty except for control). Now the input InfoPase 
name is inserted in the new InfoPase image ETS, by creating 
another new UEI for the image. The image UEI is also stored 
in the new IBDR. Finally, the inputs FLAGS are assigned to 
the new IBDR. The InfoPase can now be used as a source 
of any physical manipulation to add data, and later as a 
source of filtration to generate new EDS’s. 
Copy-InfoPase (InfoPase-UEI, NAME) 

This EDO first generates a new unique UEI for the new 
InfoPase. Next, all InfoPase files for InfoPase InfoPase 
UEI are copied to files with the same extensions and the new 
UEI for filename; this DOES NOT include module files for 
all modules encompassed by the InfoPase. Then, a the IBDR 
for InfoPase-UEI is copied in the IBDL, where the self 
identifier is changed to the newly generated InfoPase UEI. 
Finally the new InfoPase UEI is returned. If NAME is a 
valid image, it will be copied to the newly copied InfoPase 
IMAGE-ETC, replacing the existing value. The modules are 
shared by InfoPases. An InfoPase encompasses modules by 
including MDRs for modules in its MDL. 
Delete-InfoPase (InfoPase-UEI, CONTENTS) 

This EDO first appends the contents of all InfoPase files 
to their appropriate trash files, and then deletes all InfoPase 
files. finally all associated control records at the InfoFrame 
level are trashed. If the CONTENTS parameter is non-null, 
all modules encompassed by the InfoPase are trashed via 
calls to the delete-module EDO, prior to all above steps. 
PHYSICAL STORAGE OF BOSS ENTITIES 

Each of the BOSS entities described above, as well as all 
those shown in FIG. 14, is identified and located by a unique 
UEI. The identification methods have been described in the 
sections above. The location method is irrelevant to the 
BOSS technology, and any method will do, which given a 
UEI, can locate the physical data associated with that UEI. 
The following describes one such method of physical data 
storage and location. 

Using a conventional containment storage system (e.g. 
UNIX, DOS, Windows), create an InfoFrame directory in a 
storage media attached to the computer. The location of this 
directory, in the existing directory hierarchy, is recorded in 
the EDP program, such that when EDP is run from 
anywhere, it will be able to locate the directory. Further, all 
files shown in FIG. 14 (at all levels) are stored directly in the 
InfoFrame directory. This flat and simple model is depicted 
in FIG. 32. Two distinct file-sets are distinguishable at 
InfoFrame level: system and information files. System files 
contain those BOSS data entities which are critical to the 
correct operation of BOSS processes. Information files are 
generated as a result of information stored in BOSS format. 
At the InfoFrame level, there is exactly one of each file 3202 
shown in FIG. 32. At the InfoPase and module levels, there 
are many files. In FIG. 32, the number N represents the total 
number of InfoPases known to the InfoFrame, the number 
M represents the total number of modules in all InfoPases, 
and the number E represents the total number of available 
EDO program files. Each InfoPase, module, or EDO file 
name is a string derived from the UEI value identifying that 
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InfoPase, module, or EDO; this derived string is shown as 
“-InfoPase-”, “-module>”, or “-EDO-” in FIG. 32. Since 
UEIs are guaranteed to be unique, there is no possibility of 
conflicting filenames in the InfoFrame directory. Now given 
a UEI for an entity, all filenames for all files associated with 
that entity can be constructed and immediately located in the 
InfoFrame directory. 

Looking at FIG. 32, it should be clear that the connecting 
link between an IBDR and the InfoPase files, and the 
connecting link between an MDR and the module files, is a 
UEI. For example, the InfoPase UEI identifier in an IBDR 
is used to generate the filename string associated with all 
files for that InfoPase. 
BOSS INFORMATION DELETION 
When information is deleted in a BOSS environment, it is 

always via a physical EDO involved in data deletion/ 
restoration. These EDOs define the methods of information 
deletion in BOSS. The delete-node, and delete-eds EDOs do 
remove information such that subsequent generations will 
not find the “deleted” information. However, until “deleted” 
data is automatically or manually purged, it can be restored. 
Data is purged via the purge-data EDO, or as part of 
automatic BOSS processing (again via purge-data), where a 
concurrent process is initially started upon EDPstartup. This 
process would regularly schedule purges, based on initial 
user input or default values for to-purge durations. To enable 
this, all associated BOSS files (shown in FIG. 14) will have 
an associated “trash” file, where a trash file is structured as 
its real counterpart, where in addition to a record, a date/time 
stamp of deletion is also stored. For example, while the 
entries in a real CNL are just EDINs, a trash CNL contains 
records of the following structure: 
EDIN 
TIME STAMP 
Entries are duplicated in a trash file until purged. To 

restore information, the restore-data EDO is used. The 
nature of this EDO enables manual as well as automatic data 
restoration, where all information links and data are also 
restored as before. 
DEFAULT COMMAND LIST 

As shown in FIG. 14, the Default Command List (DCL) 
is an EDCS. The DCL is executed by the EDP after 
InfoFrame initialization is complete. If no DCL is defined, 
the EDP goes into an idle state, where it waits for input 
EDCLs. The best usage of the DCL is to implement a 
procedure containing an infinite loop, where the loop body 
activates/reactivates any systems, InfoPases, modules, and/ 
or EDS's required to realize a continues and changing 
overall process. The DCL is dynamic, in that any process 
activated as a result of an EDCL in the DCL can alter the 
contents of the DCL and return. This has the effect of 
altering the continuous EDP process in arbitrary ways. The 
DCL enables the EDP to institute dynamic perpetual pro 
cessing. 
The InfoPase and module activation processes will insert 

EDCLs in the DCL, as and when required. As a result, the 
DCL is automatically created/modified after InfoFrame ini 
tialization is complete. 
ENDO-DYNAMIC EDITOR (EDE) 
The BOSS environment requires at Endo-Dynamic Editor 

of some type. An EDE can use combinations of EDOs to 
perform the real BOSS data edit. An EDE can also use any 
kind of graphical user interface (GUI) or other input/output 
interface. An EDE includes means to dynamically interact 
with the EDP. An EDE includes means for dealing with 
editing EDS’s, modules, and InfoPases in a an environment 
where concurrent or multi-processing is possible. An EDE 
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includes means to maintain previous versions of modified 
data, so that data recovery is possible via the EDE. An EDE 
includes means to interact with the restore-data and purge 
data EDOs, such that a seamless “UNDO" can be imple 
mented as a combination of these EDOs and the data 
recovery means of the EDE itself. An EDE includes means 
for displaying in “bare mode”, where all EDINs are shown 
and regular EDS processing is not performed, optionally 
including means to show regularly generated EDS’s in 
separate windows as required. An EDE includes means for 
human as well as process interface, so that both a human and 
a process can operate the EDE. 
BASIC BOSS CLIENTS 

These are some basic general usages of BOSS that cover 
several important corner stones of computing. Each model 
embodies a different process-view of an EDS. In each case, 
the storage formats and some required Bond values are 
assumed and given. Also in each case, an SDE is supplied if 
applicable. 
Each general model presented may be used by any 

number of different real application programs. The basic 
boss client-models are: 

Data-Traversal comprises data entry, storage, retrieval, 
with logical hierarchy/organization; 

Structure-Definition comprises data structure definition 
and usage; 

Program-Execution comprises program, procedure, 
parameter, variable, code, lines, etc., storage and usage 
(i.e., execution); 

Analyze-Data comprises the function of deriving meaning 
and output any required actions given assumption data, 
and new input. 

Note that a DB interface is different from a program 
execution interface only in how it processes the data. It’s just 
a matter of perspective, on the same BOSS data (namely 
EDINs in various lists and orders). Even the analyze-data 
client can express all of its required rules and data as EDINs 
(and ETS data). There is a difference between the first three 
above listed clients, and the last. The first three are almost 
entirely composed of calls to EDOs to accomplish their real 
processing. The only processing in such clients requiring 
additional code (to EDO-calls), is the code required for a 
particular interface required by the client. All real processing 
can be accomplished using EDOS. This means given an 
operating EDP and its required initial data, these client 
models can be constructed almost immediately, especially in 
a GUI environment wherein interface construction is vastly 
simplified. The last client listed above requires further code 
(preferably BOSS executable procedures) to perform 
deductive, and possibly heuristic processing. Each are of 
these clients are described in ensuing subsections. 
DATA ENTRY, STORAGE and RETRIEVAL 
Many kinds of applications fall under this client-model. In 

fact, this encompasses any process which requires data 
storage, retrieval, and maintenance, where data exists in 
some hierarchy/organization, and where such data is then 
presented to a user in some depiction of the data organiza 
tion. Examples of a Data-Traversal client are: 

a system which maintains hierarchical data in a directory 
like organization, 

a system which defines and processes data structure 
definitions, and 

a dynamic menu (or window) definition, traversal, pro 
cessing and maintenance system. 

Further, many BOSS clients will need to incorporate a 
Data-Traversal client (as well as other code) to automate the 
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tasks of data storage, location, retrieval, and maintenance. 
Examples of this are: a system which dynamically processes 
(interprets) program code, and any kind of database. 
The tree 3302 of FIG. 33A is some hierarchy of data, 

where, A, B, C, and E are logical entities, providing hier 
archy for data entities identified by F, G, H, I, and K. This 
tree 3302 could be a directory tree, or a menu-tree, or any 
other kind of tree (a tree is hierarchical by nature). Although 
not shown, the data organization is not limited to trees, and 
any kind of graph, or other more compound data organiza 
tion scheme can be used. In FIG. 33B, the leaf nodes G, H, 
I, K of the tree 3302 do not appear as Subjects in the EDS 
3304. If a process were to filter for EDINs with Subject 
fields matching these IDs, the process would get an empty 
EDS for all of them. In fact, just such a process can be used 
to determine all leaf nodes in a tree-hierarchy. 
Bond can be used to establish EDIN-typing, and subject 

attribute relations. For example in a database, the statement: 
“CarS5 is Crimson” can be expressed as a single EDIN, as 
follows: 

Source Target Bond Sequence 

Car 55 Crimson is-the-colour-of N/A 

By using SDEs, which call EDOs, simple and complex 
data queries can be constructed that apply to all kinds of data 
for any kind of BOSS client. For example, a system which 
maintains a directory-like data organization, would con 
struct SDEs which will locate files and directories, while a 
database constructs SDEs to locate data with defined crite 
rions and constraints. 
DATA STRUCTURE DEFINITION AND USAGE 
When adopting a method for defining data structures, 

usually there are two basic types: primitive (e.g. string, 
signed 32-bit number, etc), akd compound, where a struc 
ture’s elements are composed of primitives and other com 
pounds. As described above, a BOSS defined record struc 
ture can have any kinds of elements whatsoever. This is 
mainly because a UEI uniquely identifies an entity any 
where. The other major factor is the already discussed 
interchangeability of the source and target fields in the 
EDIN. 

FIG. 34 shows an example minimal rendition of BOSS 
oriented data structure definition. At the top of FIG. 34, two 
compound records, “A” 3402 and “Z” 3404, are shown. 
Record “A” 3402 contains an element with data type “Z”. 
Both compounds contain elements with primitive data types. 
At the bottom half of FIG. 34, the corresponding EDS’s 
3406 and 3408 for each record is shown. The Bond field is 
used to define a binary relation as in any BOSS application. 
The key is what those Bonds are. In this case, Bonds 
describe elements of data definitions, primitive/compound 
data types, and size. 
The EDS shown for record “A” 3406 (and record “Z” 

3408) would only contain all shown EDINs, if complete 
structure traversal is performed. That is, all Attributes of a 
Subject match are themselves Subject-matched, until empty 
sets are reached. At each step, EDINs are accumulated. Such 
a traversal process could be set to terminate at any level in 
the data hierarchy. If set to “maximum” or “all levels”, the 
EDS 3408 shown for record “Z” would be part of the 
resultant EDS 3406 for record “A”. 

In the EDS 3406 shown for record “A”, the Attributes of 
four EDINs with a Subject of “A” represent the four 
elements of record “A” 3402. The element-sequence field in 
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these EDINs establishes the order of elements in the data 
structure. The rest of the EDINs describe the characteristics 
of each of the elements of record “A” 3402. 
Now consider element “B” in record “A” 3402. This 

element generates a total of three EDINs: one with a Subject 
of “A” and Attribute of “B”, and two with a Subject of “B”. 
The first signifies “B” as an element of “A”; the next two 
give the data type and size of element “B”. The Attribute 
value shown as “STRING” would be a UEI value in reality. 
Aside from the shown Bonds, any number of other Bond 
values could be implemented to provide more detailed 
descriptions of an element (e.g. associated process, input 
coordinates, display-attributes, etc). 

Aside from employing a data-traversal BOSS client, the 
Structure-Def BOSS client uses SDEs to dynamically con 
struct and generate data structure definitions. When an 
element in a structure is created where the type is the bond 
“call” or “execute”, it is a simple matter to construct an 
EDCL from all element EDINs of equal subject. The EDCL 
can then be executed in the normal manner. Since the EDP 
is capable of executing EDCLs from anywhere and at any 
level (limited by stack size), this enables BOSS defined data 
structures to contain processes which are executed when the 
data definition is accessed, regardless of the calling process, 
or any other active process. 
PROGRAM STORAGE AND EXECUTION 

Using EDINs, the EDP, and EDOs, it is possible to store, 
maintain, and execute any kind of program. As described 
above, under the EDO section, a given set of EDOs can form 
the instruction set for a programming language, when all 
such EDOs are also made available as bonds. A BOSS 
interpreted program can use the following EDIN 
implementations:, 

store an EDCS for each procedure, 
use a Structure-Def client model to store and process 

program data structures, or 
use a Data-traversal client model to save, locate and 

retrieve program code and data. 
Since a client can also create construct and supply its own 

bonds and EDOs (tagged as “user”), any missing bonds/ 
EDOs can be implemented by the client and seamlessly 
integrated into the BOSS environment. The new EDOs will 
be processed as per all EDOs, by the EDP Further, the 
associated bonds can now be used to insert new code lines 
(EDCLs) into the interpreted program. 
BOSS is ideally suited to interpreted programs, although 

it does support compiled programs as well. At a minimum, 
a BOSS oriented program must contain definitions of: 
data-types, variables, parameters, procedures, and lines of 
code. If imperative programs are required, the associated 
module must be tagged as “static”. This indicates to the EDP 
that no EDS generation should take place and that the CNL 
should be loaded and taken for the EDS(s) in question, in 
some order. While interpretive programs can be directly 
executed by the EDP, imperative programs require a “pro 
gram execution” system, program or shell which facilitates 
the execution of the imperative BOSS program. Such a shell 
would construct/establish EDCL groups for the EDP, where 
the last EDCL in each group returns control back to the shell, 
until all program processing is complete. Even using a static 
module, the normal control flow EDOs may not operate 
correctly in an imperative program. This depends on 
whether the operator performs a change of context or not. 
For example, the “edp-pop” EDO changes the next EDCL to 
be executed by the EDP, thereby changing the context of 
current processing. Such EDOs almost always cause a 
regeneration upon successful termination, to ensure updated 
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data. By introducing a lot of controls in such EDOs (and 
complicating them), it is possible to detect an imperative 
process, and return the parameters of would-be context 
change, and it’s associated action(s) to the calling process. 
This enables the calling process to always be in control of 
process flow (except for fatal errors and the like). 
The program called CCOPY, shown in FIG. 35 as 3502, 

performs a Conditional Copy. It has two parameters, and two 
variables. It also has one procedure which is not shown; only 
called. The parameters of CCOPY are two UEIs to two 
distinct files: Source File (SFILE) and Target File (TFILE). 
First, the program 3502 gets the current date of each input 
file and stores the dates in SDATE and TDATE. This is 
accomplished by calls to the GET-DATE program proce 
dure. This procedure is not shown, but it should be easy 
enough to picture it as an OS call. Finally, the program 3502 
compares the two dates and if the source file date is greater 
than that of the target file, it copies the source file, over 
writing the target file. Both the “if” and “copy” are accom 
plished by OS or shell calls (i.e., native to BOSS interface). 
The EDS 3602 shown on FIG. 36 depicts the required 

EDINs 3604 to define and be able to execute, the CCOPY 
program. The sequence field establishes an order, where a 
set of EDCLs are realized. To further define a parameter or 
variable, the same methodology as for a Structure-Def client 
is used. For example, to define the SFILE parameter, the 
following two EDINs 3604 could be added to the program 
module CNL: 

Subject Attribute Bond Sequence 

SFILE STRING DATA TYPE NULL 
SFILE “256” SIZE NULL 

The SDEs can be used to dynamically generate compo 
ments of the program, from the CNL. As a result, all program 
components remain dynamic. So if a data structure changes, 
the processes using that structure, or data in that structure, 
will immediately experience the effects of the change. As 
with any dynamic interpreted program, sufficient safeguards 
must be taken to enure only changes without destructive 
effects take place. 
CONCLUSION 

This concludes the description of the preferred embodi 
ment of the invention. In summary, 
The foregoing description of the preferred embodiment of 

the invention has been presented for the purposes of illus 
tration and description. It is not intended to be exhaustive or 
to limit the invention to the precise form disclosed. Many 
modifications and variations are possible in light of the 
above teaching. It is intended that the scope of the invention 
be limited not by this detailed description, but rather by the 
claims appended hereto. 
What is claimed is: 
1. A memory for storing data for access by a computer 

program being executed by a computer, comprising one or 
more data structures stored in the memory, the data struc 
tures including one or more Endo-Dynamic Sets (EDS), the 
EDS comprising a list of one or more Endo-Dynamic 
Information Nodes (EDINs), the EDINs each representing 
an atomic component of data, and the EDINs each compris 
ing a subject identifier, an attribute identifier, and a bond 
identifier, wherein the bond identifier defines a relationship 
between the subject and attribute identifiers and each bond 
identifier is associated with a body of executable code, so 
that the executable code is performed by the computer as a 
required action for the bond identifier when the EDIN is 
accessed. 
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2. The memory of claim 1, wherein one or more of the 
Endo-Dynamic Information Nodes (EDINs) comprise an 
Endo-Dynamic Command Line (EDCL). 

3. The memory of claim 2, wherein the Endo-Dynamic 
Command Lines (EDCLs) comprise a computer program. 

4. The memory of claim 2, wherein one or more of the 
Endo-Dynamic Command Lines (EDCLs) are referenced by 
an Endo-Dynamic Operator (EDO). 

5. The memory of claim 4, further comprising a unique 
Universal Entity Identifier (UEI) assigned to the Endo 
Dynamic Operator (EDO), wherein the UEI is referenced to 
invoke the EDO. 

6. The memory of claim 4, wherein Endo-Dynamic 
Operators (EDOs) further comprise native and non-native 
EDOs, native EDOs reference executable code, and non 
native EDOs reference one or more Endo-Dynamic Com 
mand Lines (EDCLs). 

7. The memory of claim 1, wherein the bond identifier 
comprises an Endo-Dynamic Operator (EDO). 

8. The memory of claim 7, wherein the Endo-Dynamic 
Operator (EDO) comprises an instruction. 

9. The memory of claim 1, wherein Universal Entity 
Identifiers (UEIs) uniquely identify each Endo-Dynamic Set 
(EDS). 

10. The memory of claim 9, wherein each Universal 
Entity Identifier (UEI) comprises: 

a Site Owner Identifier (SOI) field, as assigned from a 
unique Endo Dynamic Processor (EDP), to uniquely 
identify the originating site for the data; and 

a Site Entity Identifier (SEI) field to uniquely identify 
each entity at a given site, the SEI being incrementally 
generated and dynamically assigned to the entity, such 
that the SEI is never used by more than one entity. 

11. The memory of claim 9, wherein each Universal 
Entity Identifier (UEI) is a unique identifier for data in one 
or more different logical data organizations. 

12. The memory of claim 9, wherein all data is stored and 
accessed via a uniquely assigned Universal Entity Identifier 
UEI). 

( #) The memory of claim 1, wherein the Endo-Dynamic 
Information Node (EDIN) further contains a sequence iden 
tifier to provide for ordering among two or more EDINs 
existing in the same Endo-Dynamic Set (EDS). 

14. The memory of claim 1, wherein the Endo-Dynamic 
Information Node (EDIN) is dynamically generated in the 
computer. 

15. The memory of claim 1, wherein a Set Definition 
Equation (SDE) defines one or more conditions that qualify 
an Endo-Dynamic Information Node (EDIN) to be a mem 
ber of an Endo-Dynamic Information Statement (EDIS). 

16. The memory of claim 15, wherein the Set Definition 
Equation (SDE) is processed in the computer to produce an 
Endo-Dynamic Information Statement (EDIS) that contains 
qualifying Endo-Dynamic Information Nodes (EDINs). 

17. The memory of claim 1, wherein a Set Definition 
Equation (SDE) defines one or more conditions that qualify 
an Endo-Dynamic Information Node (EDIN) to be a mem 
ber of an Endo-Dynamic Command Set (EDCS). 

18. The memory of claim 17, wherein the Set Definition 
Equation (SDE) is processed in the computer to produce an 
Endo-Dynamic Command Set (EDCS) that contains quali 
fying Endo-Dynamic Information Nodes (EDINs). 

19. The memory of claim 1, wherein data is accepted from 
a user into the computer and converted into the Endo 
Dynamic Information Nodes (EDINs) using an Endo 
dynamic Editor (EDE) performed by the computer. 

20. The memory of claim 1, wherein the Endo-Dynamic 
Information Nodes (EDINs) are automatically generated in 
the computer and stored in the Endo-Dynamic Sets (EDS’s). 
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21. The memory of claim 20, wherein the Endo-Dynamic 

Information Nodes (EDINs) are generated by first generat 
ing a new Set Definition Equation (SDE) and then process 
ing the new SDE to produce a resultant Endo-Dynamic Set 
(EDS). 

22. The memory of claim 1, wherein an Endo-Dynamic 
Processor (EDP) retrieves, interprets and executes Endo 
Dynamic Command Lines (EDCL), and the order of the 
EDCLS embodies an active sequence. 

23. The memory of claim 22, wherein the Endo-Dynamic 
Information Nodes (EDINs) are used to organize all data 
stored on storage media maintained by the EDP. 

24. The memory of claim 1, wherein two or more Endo 
Dynamic Sets (EDS’s) are combined to form a Module. 

25. The memory of claim 24, wherein Universal Entity 
Identifiers (UEIs) uniquely identify each Module. 

26. The memory of claim 24, wherein two or more 
Modules are combined to form an Information Base 
(InfoPase). 

27. The memory of claim 26, wherein the InfoPase is a 
database system, and Expandable Table Sets (ETS’s) are 
used to store physical data values for the InfoPase. 

28. The memory of claim 26, wherein one or more 
Universal Entity Identifiers (UEIs) uniquely identify each 
InfoPase. 

29. The memory of claim 26, wherein the InfoPases are 
combined to create new data. 

30. The memory of claim 26, wherein the InfoPases 
further comprise one or more InfoFrames. 

31. The memory of claim 1, wherein a Set Definition 
Equation (SDE) defines a query that is processed by the 
computer to produce a set of one or more qualifying Endo 
Dynamic Information Nodes (EDINs). 

32. The memory of claim 1, wherein Endo-Dynamic 
Information Nodes (EDINs) comprise executable com 
mands of a computer program to be performed by an 
Endo-Dynamic Processor (EDP) performed by the com 
puter. 

33. The memory of claim 32, wherein the Endo-Dynamic 
Information Nodes (EDINs) are dynamically modified dur 
ing processing. 

34. The memory of claim 1, wherein the subject identifier 
is a topic and the attribute identifier is information pertaining 
to that topic. 

35. The memory of claim 1, wherein the Endo-Dynamic 
Information Nodes (EDINs) are organized into a hierarchy 
of EDINs, and further wherein descendant information for 
the hierarchy of EDINs is located in an Endo-Dynamic Set 
(EDS). 

36. The memory of claim 1, wherein the Endo-Dynamic 
Information Nodes (EDINs) are organized into a hierarchy 
of EDINs, and further wherein ancestor information for the 
hierarchy of EDINs is located in an Endo-Dynamic Set 
(EDS). 

37. The memory of claim 1, wherein the Endo-Dynamic 
Information Nodes (EDINs) are organized into a hierarchy 
of EDINs, and further wherein sibling information for the 
hierarchy of EDINs is located in an Endo-Dynamic Set 
(EDS). 

38. A memory for storing data for access by a computer 
program being executed by a computer, comprising one or 
more data structures stored in the memory, the data struc 
tures including one or more Endo-Dynamic Sets (EDS), the 
EDS comprising a list of one or more Endo-Dynamic 
Information Nodes (EDINs), the EDINs each representing 
an atomic component of data, and the EDINs each compris 
ing a subject identifier, an attribute identifier, and a bond 
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identifier, wherein the bond identifier defines a relationship 39. The memory of claim 38, wherein each of the Endo 
between the subject and attribute identifiers, each bond Dynamic Information Nodes (EDINs) comprise an Endo 
identifier is associated with an organizational structure of Dynamic Information Statement (EDIS). 
data, and the organizational structure of data is traversed 
through the EDINs. #: :#: ::: ::: :#: 


