
(12) United States Patent

US007136899B1

US 7,136,899 B1
Nov. 14, 2006

(10) Patent N0.:
(45) Date of Patent: Campailla

(54) INVERSE QUERY DECISIONS USING
BINARY DECISION DIAGRAMS AND
SUB-EXPRESSION IMPLICATIONS

(75) Inventor: Alexis Campailla, Redmond, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 789 days.

(21) Appl. N0.: 09/734,305

(22) Filed: Dec. 11, 2000

(51) Int. Cl.
G06F 15/16 (2006.01)

(52) US. Cl. 709/206; 709/206; 709/202;
709/217; 705/35

(58) Field of Classi?cation Search 709/217,

709/215, 216, 229, 226, 241, 206, 202; 707/1,
707/3; 705/35

See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,201,046 A 4/1993 Goldberg et al.
5,899,985 A 5/1999 Tanaka
6,405,191 B1 6/2002 Bhatt et a1.
6,738,868 B1* 5/2004 Gharachorloo et al. 711/411

2002/0169670 A1* 11/2002 Barsade et a1. 705/14

OTHER PUBLICATIONS

Andersen, H., “An Introduction to Binary Decision Diagrams”,
Dept. of Information Technology, Technical University of Denmark,
Lecture notes for 49285, Advanced Algorithms E97, pp. 1-36 (Oct.
1997).
Socher, R., “Optimizing the Clausal Normal Form Transformation”,
Journal ofAutomated Reasoning, vol. 7, pp. 325-336 (1991).
Andersen, H., “An Introduction to Binary Decision Diagrams”,
Lecture notes for 49285 Advanced Algorithms #97, Department of
Information Technology, Technical University of Denmark, pp.
1-36, Web://WWW.it.dtu.dld~hra (Oct. 1997).

Bryant, R., “Symbolic Boolean Manipulation With Ordered Binary
Decision Diagrams”, ACM Computing Surveys, School of Com
puter Science, Carnegie Mellon University, Pittsburgh, PA, pp. 1-30
(Jul. 1992).
US. Appl. No. 09/734,379, “Inverse Query Decisions Using Sub
EXpression Implications”.

* cited by examiner

Primary Examinerilason Cardone
Assistant ExamineriAdnan M. MirZa
(74) Attorney, Agent, or F irmiMerchant & Gould PC.

(57) ABSTRACT

A method, computer program product, and a publication
subscription broker server computing system for ?ltering
one or more messages for transmission to a subscriber

computing system according to an individual information
request criteria using binary decision diagrams. The com
puter program product contains instructions that implement
the disclosed method. The publication-subscription broker
server contains a computer process that implements the
disclosed method. The method constructs an evaluation
graph for each individual information request criteria speci
?ed for each subscriber, identi?es logical implications from
one or more binary decision diagrams from a ?rst informa
tion request criteria to one or more corresponding binary
decision diagrams Within a second information request cri
teria, receives one or more messages to be ?ltered, evaluates
a ?rst information request criteria based upon information
Within the received messages, evaluates one or more infor
mation request criteria based upon information Within the
received messages using the identi?ed logical implications
between one or more binary decision diagrams Within the
information request criteria being evaluated and one or more
binary decision diagrams previously evaluated, and trans
mits the received message to the subscriber computing
system corresponding to an information request criteria
evaluated to be satis?ed by information contained Within the
received message.

15 Claims, 13 Drawing Sheets

U.S. Patent Nov. 14, 2006 Sheet 1 0f 13 US 7,136,899 B1

FIG. 1

[3:15 DI:
CHZIIEI CHI:

[104 121

—\ 2] Internet ‘Z1

M? II
Eu: : F

C D / 122 124
\

6 . I

236

U.S. Patent Nov. 14, 2006 Sheet 2 0f 13 US 7,136,899 B1

FIG. 2

K COMPUTER 20o

OPTICAL CPU V'DEO MONITOR
D|SK219 202 ADAPTER 242

244

OPTICAL
DISK INTF 224

DRIVE 218 NETWORK
ADAPTER

252
MAGNETIC

- DISK INTF 222

DRIvE 214 [206
HARD DISK ——-—L
DRIvE 212 M

REMOTE
MEMORY 204 COMPUTER

246
BIOS 212 ROM 208 RAM 210

OPERATING PROGRAM
SYSTEM 226 MODULE 230

REMOVABLE APPLICATION
STORAGE PROGRAMS 252i???

216 228

SERIAL PORT
INTERFACE

240)

MODEM
254

KEYBOARD
234

Mouse

U.S. Patent Nov. 14, 2006 Sheet 5 0f 13 US 7,136,899 B1

FIG. 5

/—500

501

511

else or
low successor

then or

high successor

/— 503

TRUE FALSE

U.S. Patent

FIG. 6

TRUE

Nov. 14, 2006 Sheet 6 0f 13 US 7,136,899 B1

/_ 600
F = (P1 AND P2) or P3
F = if P1 then F1 else F2

where
F1 = F(P1=TRUE}

and
F2 = F(P1=FALSE)

604

628

\ else

TRUE FALSE

U.S. Patent Nov. 14, 2006 Sheet 7 0f 13 US 7,136,899 B1

FIG. 7

723

710—/ 711_/ 710—/ 711_/

U.S. Patent Nov. 14, 2006 Sheet 8 0f 13 US 7,136,899 B1

Nor
l/

EwEBEw E9920 Now

>636 262 mzmomm c2280

EmEm >530 @225

:‘w l/
4

>630 0225

wow / vowl/

2322 96:0 mmmwwo? S930 cozacownzw

59.6 96w

251/ 2262 26:0 @3822 :55

5529i E90. mmmmwmE >>mz 028mm

U.S. Patent Nov. 14, 2006 Sheet 9 0f 13 US 7,136,899 B1

FIG. 9

s1 = [(x=3) AND (y> 1)AND(y <4)] OR (x= 5)
s2 = [(x=2) AND (y = 3)] OR [(x > 4) AND (y > 2)]

901 OR (Z > 4)

W rewrite as: \ 900
910 $1 = [P1 AND P2 AND P3] OR P4

s2 = [P5 AND P6] OR [P7 AND P8] OR P9
P1

921

911

P4

P5

P7

P2

P3

930 931 930 931

U.S. Patent Nov. 14, 2006 Sheet 10 0f 13 US 7,136,899 B1

m A x Hw

mwow
NNoF

mAx “O

as

mAx H<

E. .QE

U.S. Patent

FIG. 11

Nov. 14, 2006 Sheet 11 0f 13 US 7,136,899 B1

1101

Set Current Node, X, to
Root node for Expression

S1

/_1111

ii
Set the inital conditions

for pre(X), t(X)
/—1112

Recursively visit the high
and low successors of X -

letting X‘ be the successor
of X

1113

l
Determine the

precondition Pre(X') for
successors

/—1114

l
Compute t(X') from pre(x),

pre(x'), and pre(t(X))
/-—1115

i
iterate for all implications

from S1 to S2.

/—1116

All implications
processed?

1117

1102

U.S. Patent Nov. 14, 2006 Sheet 12 0f 13 US 7,136,899 B1

FIG. 12

1201

1211

Set Y = t(X)

1 1212

Determine pre(X', X) and p(Y) 4

1214
1213

Determine pre(X', X)
Does pre(X', X) imply and p(Y)

/—1216
Determine pre(X', X)

and p(Y)
Does pre(X', X) imply

! p(Y)?

1217

return t(X') = Y

1202

U.S. Patent Nov. 14, 2006 Sheet 13 0f 13 US 7,136,899 B1

FIG. 13 1301

/—1311
Set current node to root of
graph for subscription

[1313
Mark Subscription as

being decided

yes
ls Current Node a

leaf node?

/ 1321

Evaluate p(X)

1323
/_

Set X' equal to
|ow(X)

/—1324
Set X' equal to

high(X)

/— 1225
Insert X' into Rank

Visit all targets of X' = Y

1326 1327

Set Current
Node = Y

is Y lower than
Current Node?

HO

1 302

US 7,136,899 B1
1

INVERSE QUERY DECISIONS USING
BINARY DECISION DIAGRAMS AND
SUB-EXPRESSION IMPLICATIONS

TECHNICAL FIELD

This application relates in general to a method, apparatus,
and article of manufacture for providing a publication/
subscription process for transmitting selected information to
individual subscribing users from a larger set of information
based upon individually speci?ed criteria, and more particu
larly to a method, apparatus, and article of manufacture for
providing a publication subscription process that uses an
inverse query decision process to determine a set of data to
be transmitted to individual subscribing users from a
sequence of data records based upon individually speci?ed
criteria using Binary Decision Diagrams (BDDs).

BACKGROUND

The groWth of the Internet and related communication
netWorks has given rise to increasingly larger numbers of
distributed information processing systems in Which indi
vidual users obtain information from a ever increasing
number of sources. Because of the large number of data
sources, one class of distributed information processing
systems being developed to provide users With control over
this large amount of data are publication/ subscription (“pub/
su ”) systems. These pub/sub systems typically include a
broker server system that receives or obtains information
from these data sources and forWards information to each
subscribing user When the information satis?es criteria
speci?ed by each subscribing user.

Typically, each subscribing user speci?es that he or she
Wants to receive information regarding a particular topic,
such as a stock price for a particular publicly traded stock.
The subscribing user may, for example, specify that he or
she Wants to receive all information related to the stock
When the information relates to the price of the stock being
not Within a speci?ed range of values. The subscribing user
may choose the range to be centered upon the current price
for the stock Where the upper end of the range states a price
Where the stock should be sold to obtain a certain level of
pro?ts, and Where the loWer end of the range states a price
that Would limit the user’s losses to an acceptable level. The
broker system obtains the current trading price for the
particular stock from a data source such as a stock ticker.

The broker system receives all of the stock trading
information in the above example from one or more data
sources as a sequence of messages. Each message received
must be compared With the information request criteria to
determine Whether each individual message is to be sent to
each user. As the number of subscribing user desiring to use
such a broker system increases, and as the number of
messages to be processed by a broker system increases, the
processing needed to be performed by the broker system
quickly becomes unmanageable. As both of these system
parameters increase, the processing demand placed upon the
broker system increases to a point Well beyond the capacity
of real-World processing systems.
As a result, the processing performed by the broker

system needs to be modi?ed to alloW the processing per
formed by the broker system to scale at a much sloWer rate
as both the number of subscribing users increases as Well as
the number of messages, and thus the amount of possible
information processed for possible forWarding to users,
increases. In many cases, current publication and subscrip

20

25

30

35

40

45

50

55

60

65

2
tion systems use a brute force processing methodology in
Which the information request criteria is individually pro
cessed for each subscribing user. The process of serving
additional subscribing users and processing additional mes
sages is scaled by using additional broker systems operating
in parallel. Adding additional processing systems is expen
sive to install, operate, and maintain. Therefore, a process
that sloWs the rate of groWth of the processing performed as
the number of users and number of messages increases is
needed to assist in the use and exploitation of publication/
subscription systems.

SUMMARY

In accordance With the present invention, the above and
other problems are solved by providing a publication/sub
scription process for transmitting selected information to
individual subscribing users from a larger set of information
based upon individually speci?ed criteria.
The great utility of the invention is that it provides a

mechanism to sloW the rate of groWth of the processing
performed publication/ subscription broker server system as
the number of users and number of messages increase. One
aspect of the present invention is a method for ?ltering one
or more messages for transmission to a subscriber comput
ing system according to an individual information request
criteria using binary decision diagrams. The method con
structs an evaluation graph for each individual information
request criteria speci?ed for each subscriber, identi?es logi
cal implications from one or more binary decision diagrams
from a ?rst information request criteria to one or more
corresponding binary decision diagrams Within a second
information request criteria, receives one or more messages
to be ?ltered, evaluates a ?rst information request criteria
based upon information Within the received messages,
evaluates one or more information request criteria based
upon information Within the received messages using the
identi?ed logical implications betWeen one or more binary
decision diagrams Within the information request criteria
being evaluated and one or more binary decision diagrams
previously evaluated, and transmits the received message to
the subscriber computing system corresponding to an infor
mation request criteria evaluated to be satis?ed by informa
tion contained Within the received message.

Another aspect of the present invention is a computer
program product readable by a computing system and
encoding instructions for ?ltering one or more messages to
be transmitted to a subscriber computing system according
to an individual information request criteria in Which the
computer process implements the above method. Similarly,
yet another aspect is a publication-subscription broker server
computing system for ?ltering one or more messages to be
transmitted to a subscriber computing system according to
an individual information request criteria. The broker server
has a memory module, a mass storage system, and a pro
grammable processing module, the programmable process
ing module performing a sequence of operations to imple
ment the above method. These and various other features as
Well as advantages, Which characteriZe the present inven
tion, Will be apparent from a reading of the folloWing
detailed description and a revieW of the associated draWings.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring noW to the draWings in Which like reference
numbers represent corresponding parts throughout:

US 7,136,899 B1
3

FIG. 1 illustrates a data publication-data subscription
system using a broker server according to one embodiment
of the present invention.

FIG. 2 illustrates a general purpose computing system for
use in implementing as one or more computing embodi
ments of the present invention.

FIG. 3 illustrates a data publication-data subscription
system using a broker server according to another embodi
ment of the present invention.

FIG. 4 illustrates a data publication-data subscription
system using a broker server according to yet another
embodiment of the present invention.

FIG. 5 illustrates a single BDD node With high and loW
successor edges to logical results according to one embodi
ment of the invention.

FIG. 6 illustrates a single BDD diagram for a logical
expression according to another embodiment of the present
invention.

FIG. 7 illustrates another example of a BDD tree for a
single variable x according to an embodiment of the present
invention.

FIG. 8 illustrates a broker processing system implement
ing an example embodiment of the present invention.

FIG. 9 illustrates a pair of BDD trees corresponding to
tWo subscription expressions that permit the use of impli
cations according to an embodiment of the present inven
tion.

FIG. 10 illustrates possible inferences betWeen a plurality
of decision trees according to an embodiment of the present
invention.

FIG. 11 illustrates an operational ?oW for the construction
of an implication graph Within a broker processing system
according to an embodiment of the present invention.

FIG. 12 illustrates a sequence of processing instructions
for the determining the value for the expression for a target
of an implication as used in the construction of an implica
tion graph using a folloW procedure according to an embodi
ment of the present invention.

FIG. 13 illustrates an operational ?oW for implication
graph node evaluation using implications betWeen binary
decision diagram nodes according to another embodiment of
the present invention.

DETAILED DESCRIPTION

This application relates in general to a method, apparatus,
and article of manufacture for providing a publication/
subscription process for transmitting selected information to
individual subscribing users from a larger set of information
based upon individually speci?ed criteria that uses an
inverse query decision process.

FIG. 1 illustrates a data publication-data subscription
system using a broker server according to one embodiment
of the present invention. A broker server computing system
102 is located at the center of the data publication-data
subscription system 100. The broker system 102 receives a
sequence of information messages 103 from one or more
data publishing server computing systems 111*113. These
data publishing servers 111*113 communicate With the
broker server 102 over a communications link 114. This
communication link may be a direct connection, a netWork
connection or the Internet as the information messages 103
are simply transmitted from the publishing servers 111*113
to the broker server 102.

The broker server 102 applies the individual information
request criteria for each subscribing user to the incoming
sequence of information messages 103 to determine Which

20

25

30

35

40

45

50

55

60

65

4
information message is to be forWarded to each user as a
subscription message 104. The broker server maintains a
database of the subscribing users’ information request cri
teria 115 that is used in this ?ltering process. In one
embodiment, this ?ltering process is accomplished by the
broker server 102 using an inverse query decision process
that uses sub-expression implications betWeen tWo or more
of the subscribing users’ information request criteria.
The subscription messages 104 are addressed and routed

to each subscribing user’s computing system 121*124 over
a communications netWork. In the example embodiment, the
communications netWork is the Internet 101 Where the
subscription message 104 is sent in the form of an electronic
message, or e-mail. Other messaging techniques may be
used Without deviating from the spirit and scope of the
attached claims Where the individual subscription messages
104 are addressed and sent to individual subscribing user
computing systems 121*124.

With reference to FIG. 2, an exemplary system for imple
menting the invention includes a general -purpose computing
device in the form of a conventional personal computer 200,
including a processor unit 202, a system memory 204, and
a system bus 206 that couples various system components
including the system memory 204 to the processor unit 200.
The system bus 206 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus and a local bus using any of a variety of bus
architectures. The system memory includes read only
memory (ROM) 208 and random access memory (RAM)
210. A basic input/output system 212 (BIOS), Which con
tains basic routines that help transfer information betWeen
elements Within the personal computer 200, is stored in
ROM 208.
The personal computer 200 further includes a hard disk

drive 212 for reading from and Writing to a hard disk, a
magnetic disk drive 214 for reading from or Writing to a
removable magnetic disk 216, and an optical disk drive 218
for reading from or Writing to a removable optical disk 219
such as a CD ROM, DVD, or other optical media. The hard
disk drive 212, magnetic disk drive 214, and optical disk
drive 218 are connected to the system bus 206 by a hard disk
drive interface 220, a magnetic disk drive interface 222, and
an optical drive interface 224, respectively. The drives and
their associated computer-readable media provide nonvola
tile storage of computer readable instructions, data struc
tures, programs, and other data for the personal computer
200.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 216, and a
removable optical disk 219, other types of computer-read
able media capable of storing data can be used in the
exemplary system. Examples of these other types of com
puter-readable mediums that can be used in the exemplary
operating environment include magnetic cassettes, ?ash
memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMs), and read only memories
(ROMs).
A number of program modules may be stored on the hard

disk, magnetic disk 216, optical disk 219, ROM 208 or
RAM 210, including an operating system 226, one or more
application programs 228, other program modules 230, and
program data 232. A user may enter commands and infor
mation into the personal computer 200 through input devices
such as a keyboard 234 and mouse 236 or other pointing
device. Examples of other input devices may include a
microphone, joystick, game pad, satellite dish, and scanner.
These and other input devices are often connected to the

US 7,136,899 B1
5

processing unit 202 through a serial port interface 240 that
is coupled to the system bus 206. Nevertheless, these input
devices also may be connected by other interfaces, such as
a parallel port, game port, or a universal serial bus (USB).
A monitor 242 or other type of display device is also
connected to the system bus 206 via an interface, such as a
video adapter 244. In addition to the monitor 242, personal
computers typically include other peripheral output devices
(not shown), such as speakers and printers.
The personal computer 200 may operate in a networked

environment using logical connections to one or more
remote computers, such as a remote computer 246. The
remote computer 246 may be another personal computer, a
server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the personal com
puter 200. The network connections include a local area
network (LAN) 248 and a wide area network (WAN) 250.
Such networking environments are commonplace in of?ces,
enterprise-wide computer networks, intranets, and the Inter
net.

When used in a LAN networking environment, the per
sonal computer 200 is connected to the local network 248
through a network interface or adapter 252. When used in a
WAN networking environment, the personal computer 200
typically includes a modem 254 or other means for estab
lishing communications over the wide area network 250,
such as the Internet. The modem 254, which may be internal
or external, is connected to the system bus 206 via the serial
port interface 240. In a networked environment, program
modules depicted relative to the personal computer 200, or
portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network
connections shown are exemplary, and other means of
establishing a communications link between the computers
may be used.

Additionally, the embodiments described herein are
implemented as logical operations performed by a computer.
The logical operations of these various embodiments of the
present invention are implemented (1) as a sequence of
computer implemented steps or program modules running
on a computing system and/or (2) as interconnected machine
modules or hardware logic within the computing system.
The implementation is a matter of choice dependent on the
performance requirements of the computing system imple
menting the invention. Accordingly, the logical operations
making up the embodiments of the invention described
herein can be variously referred to as operations, steps, or
modules.

FIG. 3 illustrates a broker server computing system that is
part of a data publication-data subscription system according
to another embodiment of the present invention. The broker
server 102 includes an input message queue module 301 and
a plurality of inverse query subscription modules 311*314.
The input message queue module 301 receives the sequence
of information messages 103 from a publisher message
generation system 111. In an example embodiment, the
sequence of information messages 103 include stock quote
data 302 such as a stock symbol, a date, a trade price, and
one or more historical trade price ?gures. The stock quote
data 302 is simply a data record containing a plurality of data
?elds that may contain any type of pre-de?ned data types
such as character strings, numeric variables, and binary
representations of data.

The sequence of information messages 103 are passed
from the input message queue module 301 to a plurality of
inverse query subscription modules 311*314 for processing.

20

25

30

35

40

45

50

55

60

65

6
Each of the inverse query subscription modules 311*314
processes the information request criteria for a single sub
scribing user to the pub/ sub system. In the example embodi
ment shown in FIG. 3, inverse query subscription #1 module
311 applies a ?rst information request criteria de?ned by a
client subscriber #1 121. Similarly, inverse query subscrip
tion #2 module 312 applies a second information request
criteria de?ned by a client subscriber #2 122 and inverse
query subscription #n module 314 applies an nth informa
tion request criteria de?ned by a client subscriber #n 124. As
discussed above, each of these information request criteria
may be stored within a database 115.

Each of the inverse query subscription modules 311*314
applies the subscriber’s information request criteria to the
information 103. In the example embodiment that includes
stock trade messages 302, the inverse query subscription
modules 311*314 would apply a set of relational operators
upon the values for the ?elds in the message 302. For
example, the inverse query subscription modules 311*314
may attempt to match the stock symbol ?eld for each stock
of interest. If the stock symbol matches, an additional logical
comparison may be made to the date and one or more of the
price ?elds. The entire information request criteria may be
expressed as a logical operation:

(Symbol:“MSFT’) AND (Price>:$95.00) AND
(Date>:0l/0l/2000) (1)

Of course, the entire expression may be a sequence of
logical expressions for individual stocks that are ORed
together:

(MSFT AND Expression) OR (AAPL AND Expres
sion) OR (IBM AND Expression) (2)

This expression may also be rewritten as:

(MSFT OR AAPL OR IBM) AND EXPRESSION (3)

As such, a message that relates to MSFT, APPL and IBM
may be passed to a subscriber if the other terms of the
sub-expressions are satis?ed. Other stock quote messages
would be ?ltered from being sent to this subscriber 121.
Similar logical query evaluation processing is performed for
each of the inverse query subscription modules 311*314.
The basic idea of the subscription process is to use

subexpression implications to leverage commonality
between subscriptions. Consider for example two subscrip
tions: S1:a>5 and b>3; S2:a>3 and B>l; where a and b are
messages properties and “AND” is the usual boolean opera
tor. A message is published that has a:l0; bIlO. By the
moment that the subexpression a>5 is evaluated to true, it is
possible to entail that a>3 is also true. Similarly, b>3 implies
b>1. Also, since both operand of the ?rst conjunction imply
the operations of the second injunction, the subscription
implies the second. This implication procedure can be
applied to the request criteria of Eqs. li3 above.

This subscription process is coupled and enhanced by
representing the above queries in if-then-else normal form
(INF). A boolean expression represented in INF is called a
binary decision diagram (BDD). BDDs use the if-then-else
operator instead of OR and AND operators. The if-then-else
operator is de?ned as follows:

if(x) then yO else yl:(x AND yO) OR ((NOT x)
AND yl) (4)

Reduced ordered BDDs are a special form of BDDs that
have no redundant common subexpression and where the
variables appear on each path of the graph in a speci?c order.

US 7,136,899 B1
7

Basically, a BDD is a graph that contains at each level tests
on a different variable, and Where the leaves are the truth
values true and false. To evaluate a BDD, one simply starts
at the root and each node takes a left or right branch
depending on the truth of the test at that node. No back
tracking is necessary and only one path is visited.
By evaluating a BDD in a single path, in addition to the

ordering of predicates, the subscription process alloWs the
use implications Without requiring to ?x the particular order
betWeen the queries. The subscription process is divided into
tWo parts. The ?rst part is executed When a neW subscription
is added to the system and constructs implication graph
betWeen the neW query and queries already present in the
system. The second part of the subscription process evalu
ates the queries against incoming messages. The evaluation
of the BDD graphs corresponding to these queries is per
formed Within the individual inverse query modules
311*314.

FIG. 4 illustrates a broker server computing system that is
part of a data publication-data subscription system according
to another embodiment of the present invention. Because the
broker server computing system 102 has a plurality of
inverse query subscription modules 311*314 as described
above, processing of any given inverse query subscription
module may be based upon a previously analyZed BDD
nodes if the tWo BDD nodes are appropriately chosen.
Consider an example in Which a ?rst information request
criteria is de?ned:

(Symbol:“MSFT’) AND (Price>:$95.00) AND
(Date>:01/01/2000) (5)

NoW consider the above criteria denoted as folloWs:

(A) AND (B) AND (c) (6)

If a second information request criteria is de?ned:

(Symbol:“MSFT’) AND (Price>:$95.00) AND
(Date>:02/01/2000) (7)

Which may also be expressed as folloWs:

(D) AND (E) AND (F) (8)

One may notice that the sub-expression (A) AND (B) in
Eq. 6 is identical to the sub-expression (D) AND (E) in Eq.
8. As a result, the sub-expression (D) AND (E) does not need
to be re-evaluated When the second information request
criteria is evaluated. If the broker server 102 simply refer
ences that the logical result of the sub-expression (A) AND
(B) is used in place of the sub-expression (C) AND (D) in
the second information request criteria, the processing asso
ciated With evaluating the second sub-expression is saved.
When these tWo logical expressions are converted into
BDDs, the sub-expressions for (A) AND (B) and for (D)
AND (E), Would generate implications that permit either
BDD to be evaluated using the result of the previously
evaluated BDD for the other BDD.

In FIG. 4, these results of the BDD evaluations are
illustrated as intermediate results 401, 402, 411 that are
communicated betWeen the various inverse query modules
311*314. Because the inverse query modules may need to
evaluate any number of BDD evaluations, and these BDD
evaluations may be contained in many of these inverse query
modules 311*314, the processing savings may be signi?
cant.

FIG. 5 illustrates a single BDD node With high and loW
successor edges to logical results according to one embodi
ment of the invention. The BDD node 501 is identi?ed as Pn

20

25

30

35

40

45

50

55

60

65

8
and has a high, or then, successor edge 510 Which is taken
When the result of the test for Pn is TRUE. The BDD node
501 also has a loW, or else, successor edge 512 Which is
folloWed When the result of Pn is FALSE. The loWer nodes,
502*503, in this example are simply logical results of TRUE
or FALSE. These loWer nodes 502*503 may also be addi
tional BDDs having their oWn equations. The BDDs, hoW
ever, alWays terminate in logical TRUE or FALSE Which
correspond to the result of the evaluation for the entire BDD.
The subscription process presented here requires that the

BDDs are not reduced. In other Words the BDDs must be
trees, not graphs. The BDDs must be ordered a according to
a global predicate order. Although no particular order is
imposed, it’s a good idea to keep predicates that tests the
same variable adjacent in the ordering.

When referring to a BDD node 501, there are many concepts
associated With the node:
The node itself;
The predicate tested at the node; and
The subexpression computed by that node.

The subscription process uses the folloWing symbols. Given
a node denoted as N:

P(N) is the predicate tested at node N; and
e(N) is the subexpression computed by node N.

The subscription process also uses the folloWing conven
tions:

High (N) is the node corresponding to the then branch,
also referred to as high successor;

LoW (N) is the node corresponding to the else branch, also
referred to as loW successor; and

Parent (N) is the parent of node N. A node has a single
parent since the BDDs are not reduced; and

Path (N) is the set of nodes in the path from the root to
node N.

Given the BDD node M, and node X in path (M), the
subscription process de?nes a precondition of M at X, and
denote it as pre(M,X), as folloWs:

If M is high Q() or a descendant of high (X), then
pre(M,X):P (X).

If M is low Q() or a descendant of loW (X), then pre (M,
X): !P (X).

The subscription process noW considers the conjunction,
or the logical AND, of the predicate pre(M, X) for every X
in path (M). The resulting predicate is called the precondi
tion of node M, and it is denoted With pre(M).

(9)
Pre(M) : X E pathm/I) pre(M, X)

The interpretation of pre(M) is straightforward. The sub
scription process reaches node M While evaluating the BDD
if and only if pre (M) is true.

FIG. 6 illustrates a single BDD diagram for a logical
expression according to another embodiment of the present
invention. Consider logical expression 600:

F:(P1 AND P2) or P3. (10)

This expression 600 may be reWritten as:

FIif P1 then F1 else F2 (11)

Where F1 is F evaluated With P1 being TRUE and F2 is
F evaluated With P! being FALSE.

US 7,136,899 B1
9

This logical expression may be expanded into the set of
BDD nodes shown in FIG. 6 Where the expansion process is
Well knoWn in the art.

In order to evaluate F 600, an evaluation process starts at
P1 601 and evaluates the predicate corresponding to P1. If
the result of the evaluation is TRUE, the then edge 621 is
folloWed to BDD P2 602. And the process repeats for BDD
P2. Similarly, if the result of the evaluation of P1 is FALSE,
the else egde 622 is folloWed to BDD node P3 604. Again,
the process repeats for BDD node P3 604. The entire
evaluation processing continues until either a TRUE 610 or
FALSE 611 node is reached. The evaluation of the expres
sion F 600 Will occur using the BDD tree for all values of
P1, P2, and P3.

FIG. 7 illustrates another example of a BDD tree for a
single variable x according to an embodiment of the present
invention. The example BDD tree consists of three nodes
701*703 in Which a different expression of variable x is
contained Within each node 701*703. For any value of x, say
x:12, a single path for either TRUE 710 or FALSE 711
exists. For x:12, the path goes from node P1 to P2 using
then edge 721 and then from P2 to FALSE using else edge
724. For X:2, a different path from P1 to P3 using else edge
722 folloWed by the then edge 725 to TRUE 710. Any set of
expressions may be easily evaluated using this process.

Implications can be used Within a single query to simplify
the query. Redundant nodes in BDDs are not alWays the
result of an error by the user. This is a consequence of the
fact that normaliZation into INF treats each predicate as
independent from the others, not considering implications.
As an example, the expression:

If (XI3) then (If (XIS) then S1 else S2)

can be simpli?ed as if @(I3) then S2.
In general if a node M has an implication relationship With

its successor N, We can remove N and make M point to a
successor of N, if the implication is concordant With the
relationship betWeen M and N. The folloWing root rules are
used:

(12)

if N:hig_h(M): (14)

ifp(A/I):>p(N), remove N and set high(A/I) to high

(N); (15)

ifp(1\/I):> !p(N), remove N and set high(M) to loW

(N) (16)

if N:lOW(M)I (17)

if !p(A/I):>p(N), remove N and set loW(A/I) to high
(N); (13)

if !p(A/I):> !p(N), remove N and set loW(A/I) to loW
(N) (19)

FIG. 8 illustrates a broker processing system implement
ing an example embodiment of the present invention. A
broker server 102 receives a neW message 103 from a

publisher server into an input message queue module 301.
The messages are sent to an inverse query BDD evaluator
module 801. The inverse query BDD evaluator module 801
evaluates all of the queries for all subscribing users using the
data from the incoming message 103. The inverse query
BDD evaluator module 801 obtains all of these queries from
an inverse query binary decision graph database 802. The
inverse query BDD evaluator module 801 sends the message
103 to a subscription output message queue module 804
With the address or other identifying information for a

20

25

30

35

40

45

50

55

60

65

10
subscribing user if the data from the message 103 satis?es
the query for the subscribing user.
The subscription output message queue module 804 trans

mits the outgoing message 104 to a subscribing user.
The broker server 102 receives a neW query statement 811

for a subscribing user in an inverse query implication
processing module 803. The inverse query implication pro
cessing module 803 adds the neW query to the end of the
ordered sequence of queries to be evaluated using incoming
message data 103. The neW query is added to the inverse
query binary decision graph database 802. The inverse query
implication processing module 803 next identi?es any
implications betWeen existing queries and the neW query as
discussed above and adds these graphs to the data stored
Within the database 802 associated With the neW query.

The process of identifying neW implications and adding
implications to a decision tree or graph may be performed as
a background processing task that operates in parallel With
the evaluation of incoming messages 103 against the queries
in the database 802. The fact that a neW query has been
added to the database 802 alloWs the neW query to be used
immediately. If all of the useful implications betWeen exist
ing sub-expression nodes in the database 802 and the neW
query have not been identi?ed and added to the neW query
When the neW query is evaluated, a proper evaluation of the
neW query Will still occur. Of course, the failure to identify
possible implications that may be used Will simply cause
additional processing to evaluate all of the sub-expressions
Within the neW query to be performed even though this
processing may have been avoided using an implication
from a previously processed sub-expression. When the
inverse query implication processing module 803 has com
pleted the process of identifying useful implications and
adding these implications to the graph, all subsequent evalu
ations of the neW query Will use these implications rather
than evaluate the sub-expressions directly.
The inverse query implication processing module 803

receives tWo queries S1 and S2, in their ordered BDD
representation. The predicates in the tWo BDDs must folloW
the same order. No evaluation order is ?xed betWeen queries
S1 and S2. First inverse query implication processing mod
ule 803 ?nds implications from S1 to S2, and then sWitch the
queries and ?nd implications in the opposite direction.
Because the process is identical, only the ?rst part is shoWn.
The goal of the processing by this module 803 is to ?nd,

for each node X and S1, the loWest, according to predicate
order, node Y of S2 for Which pre (X):>pre(Y). For con
venience, node Y is called the target of X and denoted as
t(X). If, at evaluation time, node X is reached, the processing
Within the module 803 knoWs that pre(X) is true, and, for the
implication, that pre (Y) is true. Therefore S2 can be
computed by e(Y).
The construction of the BDD implication graph is pretty

straightforward. The processing in module 803 recursively
visits the nodes Within S1 in pre order. While processing
each node, module 803 keeps track of the can precondition
and target of the current node X. The processing performs
the folloWing:

1. Initially, X is the root of S1. preQQ is empty (true). t(X)
is the root of S2.

2. The loW and high successor children of X are recur
sively visited. Let X' be one of successors, the reason
ing is identical for the high and loW successors.

4. The target t(X) is computed. PreQi') implies preQi),
Which in turn implies pre(t(X)). The processing in
module 803 determines if the additional predicate pre

US 7,136,899 B1
11

CC, X) implies some predicates of the S2 that are not
in pre(t(X)). To do that, the processing starts with
Y?(X) and a iterate through the following steps:

a. if pre(X', X):>p(Y) then Y is set to high(Y) and the
processing iterates;

b. if pre(X', X):> !p(Y) then Y is set to low(Y) and the
processing iterates; and

c. if neither of the above implications holds, tQ('):Y
As a target tQQ for every node X and S1 is found, the

processing within module 803 annotates the two BDDs
with an implication edge from X to tQQ only if t(X) is
lower than X according to the predicate order. This ?nal
condition is included to maximize the effectiveness of
the evaluation processing.

Given the BDD implication graph construction processing
described above, one sees that BDDs must not be reduced:
If they were not reduced, there would be no single path from
the root of the graph to a node and hence there would be no
single precondition to any node.

FIG. 9 illustrates a pair of BDD trees corresponding to
two subscription expressions that permit the use of impli
cations according to an embodiment of the present inven
tion. Consider the two expressions 900:

S1:[(x:3) AND (y>1) AND (y<4)] OR (XIS) (20)

S2:[(x:2) AND (y:3)] OR [(x>4) AND (y>2)] OR
(Z>4) (21)

Rewrite these expression as:

S1 :[Pl AND P2 AND P3] OR P4 (22)

SZI/PS AND P6] OR [P7 AND P8] OR P9. (23)

Organize the nodes such that the nodes having expressions
based upon x, P1 910, P4 911, P5 921, and P7 922 are placed
together. Similarly, organiZe the nodes such that the nodes
having expressions based upon y, P2 910, P3 911, P6 921,
and P8 922 are placed together, and the nodes having
expressions based upon Z, P9 924 are placed together.
Construct the then edges and else edges to represent the
BDD trees for S1 and S2 as shown in FIG. 9.
Now start with node P1 910, which is the highest node in

S1 and compare it with P5 920. By comparing the expres
sions based upon x in P1 and P5, implications may be made.
If P1 is true, then x must equal 3. As a result, x cannot also
equal 2 and P5 must be FALSE.

If the process starts with an implication 940 from P1 910
to P5 920, the above evaluation of x:3 and P1 910 being
TRUE, leads to the implication that P1 910 implies that S2
will reach P7 using else edge 961. This implication is the
indicated with implication edge 941. The process can be
repeated as if x:3 for this situation, then P7, x>4 must be
FALSE. As a result, the else edge 942 will be followed when
S2 is evaluated. Thus, P1 being TRUE implies S2 may be
evaluated simply by evaluating P9 924, as indicated using
implication edge 942.

Finally, because P1 was evaluated as TRUE, the evalua
tion of S1 will follow then edge 963 to P2 912. Therefore,
P2 912 will imply P9 924 as indicated by edge 943. This
process will repeat for values of y and then all other
variables in expressions S1 and S2.

In general, the evaluation process keeps track, for each
subscription, of the current node that evaluates the subscrip
tions. The current nodes are kept in a rank ordered according
to predicate order, so that the ?rst element of the rank is
always the highest node according to predicate order.

5

20

30

35

40

45

50

55

60

65

12
1. Initially, the current node for each subscription is the

root of that subscriptions.
2. The evaluation process iterates until the rank is empty.

At each step, the evaluation process extracts the ?rst element
of the rank. Let this node be called X.

A. If X is a leaf node, which is true or false, the evaluation
process marks the subscriptions as decided and goes
back to step 2.

B. Otherwise, the evaluation process evaluates pQi). If
p(X) is true we consider X':high(X), otherwise we
consider X'IlOWQi). The evaluation process inserts X'
in the rank. The evaluation process also visits the
targets of X'. For each target Y, the process compares
the target with the current node Z for the same sub
scription that Y as part of. If Y is lower than Z
according to predicate order, the evaluation process
updates the current node for that subscription to be Y

This evaluation process visits the entire set of BDD nodes
breadth ?rst, consistently moving down the frontier of
current nodes. At each step, the evaluation process considers
the highest node of the frontier and evaluates the predicate
at the node. Evaluating the predicate determines for the
process which node will be the next node to evaluate for the
current subscription. The evaluation process also can use all
implications concordant with the result of the predicate to
take shortcuts in evaluating other subscriptions. The evalu
ation process does not always take a shortcut, as target
subscription could already be in a more advanced state of
decision. The evaluation process terminates when the count
of elements in the rank reaches Zero, which means that all
the subscriptions are decided. Partial results, some subscrip
tions been decided, can also be emitted as these results are
obtained. The rank can be implemented using a sorted list,
or a heap. The heap achieves both removal of the highest
element in the rank and insertion of a new element in
logarithmic time.

FIG. 10 illustrates possible inferences between a plurality
of BDDs according to an embodiment of the present inven
tion. The above discussion has always involved two syntax
trees in which implication edges are added. When this
process is extended to a plurality of queries additional
processing is needed as multiple implication paths between
two nodes may arise.

Consider a set of expressions X1, X2, . . . Xn that exist

between 11 different queries. From these expressions, con
sider when X1:>X2:> . . . :>Xn. From the transitivity

property, an implication Xi:>Xj exists between all possible
couples of Xi and Xj where i<j. From this fact, the number
of resulting edges would be n*(n+ 1) and the number of paths
would be of the order of 2An.

This situation is easily demonstrated with the following
example illustrated in FIG. 10. Consider three syntax graphs
1001*1003, each containing a node using a predicate of X.
Node 1011 contains A in which A:X>9. Node 1012 contains
C in which C:X>5. Node 1013 contains E in which E:X>3.
From these nodes a set of implication edges may be found.
These edges include:

A:>C 1021 (24)

C:>E 1022 (25)

A:>E 1023 (26)

From these three implications, an implication from A 1011
to E 1013 may be found using either the two implications
1021*1022 from A 1011 to C 1012 and from C 1012 to E
1013 or the implication 1023 directly fromA 1011 to E 1013.

