a2 United States Patent

Qiu et al.

US006377960B1
@0y Patent No.: US 6,377,960 B1
@5) Date of Patent: Apr. 23, 2002

(54)

(75)

(73)

(")

@D
(€2)

D
(%2
(58)

(56)

TRANSACTIONAL CONFIGURATION
STORE AND RUNTIME VERSUS
ADMINISTRATION ISOLATION WITH
VERSION SNAPSHOTS AND AGING

Inventors: Wenjun Qiu, Bellevue; Jason L.
Zander, Redmond; Markus
Horstmann, Redmond; William D.
Devlin, Redmond, all of WA (US)

Microsoft Corporation, Redmond, WA

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

........................... GO6F 17/30

Assignee:

(US)
Notice:
Appl. No.: 09/361,107
Filed: Jul. 26, 1999
Int. CL7 ..coooovvnnn.
US. CL e

Field of Search

..... 707/203; 707/200; 717/11

707/100, 101,

707/102, 200, 201, 203, 204; 717/11

References Cited

U.S. PATENT DOCUMENTS

5485617 A 1/199
5517645 A 5/1996
5,706,505 A 1/1998
5758154 A * 5/1998
5794038 A 8/1998

Stutz et al.
Stutz et al.
Fraley et al.
Qureshi ...ooovvvenivvnnnnnnn. 395/651
Stutz et al.
401
406
Read Only Data Table Object /_
407 / \
W l[l)elatlonal RegDBAPI |/~ 408
atabase
Module Module

5,911,068 A 6/1999 Zimmerman et al.

6,154,878 A * 11/2000 Saboffc...ccoeis 717/11
6,185,734 B1 * 2/2001 Saboff et al. . . 717/11
6,263,348 B1 * 7/2001 Kathrow et al. 707/203

OTHER PUBLICATIONS

Chappell, D., “COM+ The Future of Microsoft’s Compo-
nent Object Model”, Distributed Computing Monifor, vol.
13, No. x, pp. 3-17 (1998).

* cited by examiner

Primary Examiner—Hosain T. Alam
Assistant Examiner—Joon Hwan Hwang
(74) Antorney, Agent, or Firm—Merchant & Gould P.C.

G7) ABSTRACT

An improved registration datastore comprises a datastore
containing the database coupled to a data table object
structure to present the data to a registration system in the
form of an abstract table of data. The use of a data table
structure between the registration system and the datastore
provides storage location and format independence as the
data table object presents the registration data to a calling
object in the form of a data level table, a collection of
configuration data items. The improved registration system
permits one or more objects to be simultaneously installed
into the registration database by different sources. The new
registration system utilizes a database versioning and aging
mechanism to permit multiple calling objects to operate
using a version of the database known to be valid when its
operations began.

15 Claims, 8 Drawing Sheets

402

Background Thread 415
Module

413

RegDB Crm
Compensator
Moduie

Read|Write 414
Data Table a
Object

Complib
Engine
Module

V41‘

Shared Memory Control Block
{Latest Version Number)

403
I

421

Shared Read Only Memory
Mapped File

/7 422

4
==

24

425
(|

426

File System Module

I

U.S. Patent Apr. 23, 2002 Sheet 1 of 8 US 6,377,960 B1

IBM
Compatible

Laptop
computer

Server

Server

104\

Workstation

E

Server

102\

N\
et
S
N

Server

120

DesktopfComputer

FIG. 1

US 6,377,960 B1

Sheet 2 of 8

Apr. 23, 2002

U.S. Patent

plz JdoMeS 71z Jeindwo)
= 0 m
_. 1d 14 __ 1d 1d 1d 1d 1d 1a
| T _ [ovz > .w
11
8L ey _ _ Zce 17 8€¢
11
I iy _ 11
0ze
| - 5
| [_ 50 K SO
|
012 N ojejen oee mo_Emo 3 gzz
awnuny awnuny
— |10 M sz |
302 uoRedlddy 202 uoneoddy
-} JOAIRS [ooj u -
oneJisiuiw
jejsiulwpy 05z
0 —/ |
|
1aH so €T \
12 10
00Z — 9Z¢ 9¢¢T
uopjeslddy V2T = 1414 H
90Z4 WD _wwmm_r_:%o [|00 UOHENSIUILIPY |

¢ 9ld

(H

Mouse
336

U.S. Patent Apr. 23, 2002 Sheet 3 of 8 US 6,377,960 B1
FIG. 3a
COMPUTER 300
OPTICAL CPU A[\D/A?,ET%R MONITOR
DISK 319 302 342
344
OPTICAL
DISK [INTF 324
DRIVE 318 INTF 324} NETWORK
ADAPTER
352
MAGNETIC
- DISK [INTF322H
DRIVE 314 (306
LAN
348
HARD DISK [0 ‘
DRIVE 312 |~ 927
REMOTE
346
BIOS 312 || ROM 308 || RAM 310
OPERATING PROGRAM
SYSTEM 326 | MODULE 330
REMOVABLE | APPLICATION
STORAGE | PROGRAMS | HOSRAM
316 328
SERIAL PORT
INTERFACE
340
MODEM
354
KEYBOARD
334

US 6,377,960 B1

Sheet 4 of 8

Apr. 23, 2002

U.S. Patent

€9¢€ \\

3INPOW Wa)sAS
9|14 gabey

A

8|NpoN uonessibay

€L€
S|NPON SINpon
uoljeo|jddy Bojeyen awiy

wajsAg -uny ggbey

_ 1 k L
cLE
LLE L
29¢ I/

SINpoN

13j|eysu| Jusuodwon

S9|NPON SSBI0I4 S| -Uny

19¢ ‘\

00€ ‘\

q¢ "Old

U.S. Patent Apr. 23, 2002 Sheet 5 of 8 US 6,377,960 B1

402
/401 [
406 Background Thread |/ 415
Read Only Data Table Object /[Module

413
IS
/\ RegDB Crm Read/Write /— 414

407
Relational 408 Compensator Data Table
W Database RegDBAPI |/ Module Object
Module Module
411
/_

RegDB Complib 4172
Server Engine /_
Module Module

|

Shared Memory Control Block |/ 403
{Latest Version Number}

Version n-2 423
425 [
e -
421 N
/7 Version n-1 —REQDBJNP

426
/—\/_
Shared Read Only Memory |/ \[>—"

Mapped File - T/ Version n

/7 422

File System Module

U.S. Patent Apr. 23, 2002 Sheet 6 of 8 US 6,377,960 B1

FIG. 5

—

501 —\| Shared Memory Module Check operation Found
Gets the latest version number from the
Shared Memory Control Module

|
Not Found

v

Get Latest
Version 503 \ Registry Check operation Found
Gets the latest version number from the >

Registry

Not Found

v

505 File System Check operation
~\| finds the latest REGDB file from the file
system mass storage and writes the version
number into the registry

507 —\ Open RegDB file operation opens the
latest REGDB file as a shared memory
mapped file

U.S. Patent Apr. 23, 2002 Sheet 7 of 8 US 6,377,960 B1

FIG. 6

601 Update Call operation calls into the
Catalog Server to perform a RegDB
Update

602 —|Get ID operation gets the Transaction
1D from the context of the Call

610

 Transaction Check ™ Compare 1D operation compares
603 operation de.te-rmmes if a transaction Yes transaction ID received from
IS In progress
g transaction ID in progress
611 Test operation
hranches if IDs are the same
No
No
A 4
Inhibit Operation inhibits further
< operations until current transaction
completes operation
604 — [Start Transaction operation registers 612 J

the REGDB CRM Compensator

605 —\| Cony operation copies the latest
version of RegDB file to Temporary Yes
File REGDB.TMP and opens temp file

v

Update operation makes in memory
updates to REGDB.tmp

606 —|

U.S. Patent Apr. 23, 2002 Sheet 8 of 8 US 6,377,960 B1

FIG. 7b
FIG . 7a Commit operation ﬁ 711

provides notifcation to
e RegDB Compensator

Prepare operation /— 701
provides notification to
RegDB Compensator

A 4

‘< Prepare Phase Rename operation /—‘ 712

renames REGDB.tmp to
new version of REGDB

Save operation saves all 702
in memory operations to -

REGDB.tmp file
N
Update version number 713
operation updates version /'
(a) number in shared
memory block

Signal operation sets 714
registry key to signal run- | /
time processes that
REGDB has been

updates

Delete operation adds old| 715
version REGDB file name
to delete list

A

Unlock operation unlocks | ~— 716
the operation of the next
transaction

(b)

US 6,377,960 B1

1

TRANSACTIONAL CONFIGURATION
STORE AND RUNTIME VERSUS
ADMINISTRATION ISOLATION WITH
VERSION SNAPSHOTS AND AGING

TECHNICAL FIELD

This invention relates in general to a method and appa-
ratus for providing a software object registration datastore,
and more particularly to a method and for providing a
transactional configuration datastore having runtime versus
administration isolation with version snapshots and aging.

BACKGROUND OF THE INVENTION

In prior software object registration processes, software
components were installed into a system by requiring the
component developer to modify a system registry to place
catalog information within the registry to inform the system
of the existence, location, and properties of the component
or object. This software architecture requires all developers
to both understand and utilize the organization and structure
of the registry to install their objects. This requirement is
significant in that the actions of one developer may
inadvertently, and yet, adversely affect the operation of other
objects once the common registry is altered. Additionally,
the previously implemented organization and structure of
the registry needs to be maintained to ensure the operation
of legacy operations within a system.

SUMMARY OF THE INVENTION

These problems are solved in one aspect of the present
invention by defining a new registration datastore and cor-
responding registration system that is constructed to hold the
system catalog information previously stored within the
registry. The registration data is presented to calling pro-
cesses utilizing an abstract data structure to permit the
datastore to be implementation format and storage location
independent to overcome the problems found in prior sys-
tems.

Also, the present invention solves the above-described
problems by providing an improved registration datastore
comprises a datastore containing the database coupled to a
data table object to present the data to a registration system
in the form of an abstract virtual table of data. The regis-
tration system places the new registration data for an object
being installed within the system into the database using the
data table. This feature provides for isolation between the
developer and the datastore.

The use of a data table structure between the registration
system and the datastore provides storage location and
format independence as the data table presents the registra-
tion data to a calling object in the form of a data table, a
collection of data items. As such, legacy issues are mini-
mized or eliminated as backward compatibility may be
maintained by utilizing a constant organization for the data
stored and the data retrieved using the data table. The data
table will process the data from its table into a form needed
to store it within one or more datastores used to construct the
registration database (RegDB).

This invention also relates to a new registration system
which permits multiple sources to read from the registration
datastore while another is updating the datastore. Write
operations from different sources are serialized. Each write
operation may include a separate set of changes and the
write operation may be transactional. The new registration
system utilizes a database versioning and aging mechanism

20

25

30

40

45

50

55

60

2

to permit each calling object to operate using a version of the
database known to be valid and latest when its operations
began. When an object is modifying the database, the entire
database is copied to a temporary file and then modified. The
modified file is renamed to a new version of the database.
Each version of the database possesses a unique name that
includes a version number. Objects reading from a particular
version of the database may continue to operate using the
same version of the database after a new version is created
by the registration process. Once all objects have released a
particular version of the database and when their processing
is complete, the old versions of the database are deleted by
a background thread executing as part of the system process.

These and various other advantages and features of nov-
elty which characterize the invention are pointed out with
particularity in the claims annexed hereto and form a part
hereof. However, for a better understanding of the invention,
its advantages, and the objects obtained by its use, reference
should be made to the drawings which form a further part
hereof, and to accompanying descriptive matter, in which
there are illustrated and described specific examples of an
apparatus in accordance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a block diagram for a client server
architecture used in conjunction with an example embodi-
ment of the present invention.

FIG. 2 illustrates a block diagram of an exemplary client
server architecture employing a COM+ catalog in accor-
dance with the present invention.

FIGS. 3a and 3b illustrates an exemplary computing
system for implementing the present invention comprising a
general purpose computing device in the form of a conven-
tional personal computer.

FIG. 4 illustrates a logical block diagram of a RegDB
configuration datastore according to an example embodi-
ment of the present invention.

FIG. 5 illustrates a logical operation flow diagram for the
operations performed associated with a REGDBAPI process
according to one example embodiment of the present inven-
tion.

FIG. 6 illustrates a logical operation flow diagram for the
operations performed associated with a REGDBSERVER
transaction in progress process according to one example
embodiment of the present invention.

FIGS. 7a and 7b illustrates a logical operation flow
diagram for the operations performed associated with a
REGDBSERVER transaction commit process according to
one example embodiment of the present invention.

DETAILED DESCRIPTION

An embodiment of the present invention utilizes table
objects for providing one or more new object registration
datastores in a computer system. The new registration datas-
tore and corresponding registration system is constructed to
hold system catalog information previously stored within the
registry. The registration data is presented to calling pro-
cesses utilizing an abstract data structure. In the preferred
embodiment, the registration datastore is accessed using a
data table object.

FIG. 1 is a pictorial representation of a suitable client-
server computing environment in which an embodiment of
the present invention may be implemented in both clients

US 6,377,960 B1

3

and servers. In a computing network 100, client computer
systems 102, 104, 106 and 108 are connected to server
computer systems 110, 112, 114 and 116 by a network
connection 118. Additionally, client computer 120 is con-
nected to server computer 110 via a communication link,
such as the Internet 122 or a local area network. Since the
server 110 is connected via the network connection 118 to
the other servers 112, 114 and 116, the client computer 120
is also connected and may access information on the other
servers 112, 114 and 116, and clients 102, 104, 106, and 108,
as well as other computer systems coupled to the network
100.

The client computer systems 102, 104, 106, 108 and 120
operate using at least some of the information and processes
available on at least one of the servers 110, 112, 114 and 116
as well as other computer systems coupled to the network
100. Each client is preferably a complete, stand-alone com-
puter and offers the user a full range of power and features
for running applications. The clients 102, 104, 106 and 108,
however, may be quite different from the other clients as

long as they can communicate via the common interface
118.

The servers 110, 112, 114 and 116 are preferably
computers, minicomputers, or mainframes that provide tra-
ditional strengths offered by minicomputers and mainframes
in a time-sharing environment (e.g., data management,
information sharing between clients, and sophisticated net-
work administration and security features). The client and
server machines work together to accomplish the processing
of the executed application. Working together in this manner
increases the processing power and efficiency relating to
each independent computer system shown in FIG. 1.

Typically, a client portion or process of an application
executed in the distributed network 100 is optimized for user
interaction whereas a server portion or process provides the
centralized, multi-user functionality. However, each client
computer 102,104, 106, 108 and 120 can perform functions
for other computers, including the clients and servers, thus
acting as a “server” for those other computer systems.
Similarly, each of the servers 110, 112, 114 and 116 can
perform functions and relay information to the other servers,
such that each server may act as a “client” requesting
information or services from another computer in particular
circumstances. Therefore, the term “client,” as used herein-
after refers to any computer system making a call or request
of another computer system and the term “server” is the
computer system servicing the request.

As part of the sophisticated network administration, each
computer is able to access configuration information related
to applications and resources available on the other com-
puters in the network 100. The configuration information is
located within memory or persistent storage on each com-
puter system, i.e., in a datastore. Additionally, each com-
puter system may have more than one datastore of configu-
ration information that must be accessed by the other
computer systems. Moreover, the different datastores may
each have different data types or formats. In order to access
configuration information from these many and various
computer datastores, a client, i.e., the system or process
making the request for information, communicates with a
“catalog” interface on the computer system.

FIG. 2 depicts an exemplary client/server architecture
employing COM+ catalogs in accordance with the present
invention (COM is an acronym for Component Object
Model). A COM+ Catalog is a virtualized database of
COM+ applications and their services, with runtime and

20

25

40

50

55

60

4

configuration-time abstraction layers for using and manipu-
lating configuration information. An embodiment of the
present invention, for example, may be employed in a
component-based programming model of a transaction pro-
cessing runtime environment for developing, deploying, and
managing high-performance, scaleable, and robust enter-
prise Internet and intranet server applications.

A“component” is software containing classes that may be
created and exposed as “objects” (i.e., self-contained pro-
grammed entities that consist of both data and functions to
manipulate the data) for use by another application. A
component can also use objects exposed by another appli-
cation. For example, a developer can create an application
using ActiveX components that can be updated and managed
easily as in-process DLLs (Dynamic Link Libraries). The
DLLs are then installed into the COM environment for
execution within the application. Components can be devel-
oped specifically for a developer’s single application, devel-
oped for use with multiple applications, or purchased from
a third party.

COM technology allows a piece of software to offer
services to another piece of software by making those
services available as “COM objects”. COM is a foundation
for an object-based system that focuses on reuse of inter-
faces. It is also an interface specification from which any
number of interfaces can be built. Each COM object is an
instance of a particular class and supports a number of
interfaces, generally two or more. Each interface includes
one or more methods, which are functions that can be called
by the objects’ clients. COM+ technology is an extension of
COM technology that includes a new runtime library that
provides a wide range of new services, such as dynamic load
balancing, queued components, an in-memory database, and
events. COM+ technology maintains the basics of COM
technology, and existing COM-based applications can con-
tinue to work unchanged in a COM+ environment.

An object implemented to comply with COM+ is referred
to as a “COM+ object”. A component that includes one or
more classes that may be instantiated as a COM+ object is
referred to as a “COM+ component”. Each COM+ compo-
nent has attributes, which can be set in a component (or type)
library. Attributes are a form of configuration data required
by many software components to execute correctly and
completely. An application that includes COM+ components
is referred to as a “COM+ application”. When a component
is made part of a COM+ application, its component (or type)
library is written into a COM+ catalog. When an object is
instantiated from that component, the attributes in the
COM+ catalog are examined to determine the object context
that contains properties for the object. Based on the object
context, other services required by the object are provided.
In this manner, a developer can merely identify in the
attributes the additional functionality required by the object,
and based on the object’s attributes, the appropriate other
services that are available within the system, or the acces-
sible network, are executed to provide that functionality.

In FIG. 2, a client computer 200 is coupled via a network
to one or more remote computers (e.g., a computer 202 and
a server 204). Although the embodiments of the present
invention are illustrated and described herein relative to
multiple computer systems coupled by a computer network
or other communications connection, it is to be understood
that an embodiment of the present invention may be
employed in a stand-alone computer system to provide
access to configuration information in the system.

A client application 206 executes on the client computer
200 to access a server application 208 executing on the

US 6,377,960 B1

5

server 204. For example, the server application 208 may
include a database application that receives a query from the
client application 206 and accesses a customer database (not
shown) for all customer data satisfying the query. During
operation, the server application 208 may require configu-
ration data recorded in a datastore (such as datastores 214 or
216). For example, a transaction server application can
determine the security level of a user according to a “role”
assigned to the user by an administrator or other means.
Accordingly, the transaction server application might query
a role definitions database to validate the user’s access to a
transaction database (not shown). In another example, the
server application 208 accesses configuration information to
verify that required services are available for its execution.

To obtain configuration information in the illustrated
embodiment, the server application 208 accesses a runtime
catalog 210 running on the server 204. The runtime catalog
210 causes one or more table object dispensers to create
catalog table objects (shown generally as table system 218)
providing the required configuration data in a table to the
server application 208. A “table object” includes an object
that provides a caller with access to underlying data, pre-
senting that data in virtual “table” format through a defined
table interface. A table object may also provide its own
functionality, read and write caching and the triggering of
external events, in addition to other features. The table data
is accessed by a caller (e.g., a catalog server, a runtime
catalog, or an overlaying logic table object) by way of a
table-oriented interface, preferably including table cursor
methods. In the exemplary embodiment, the runtime catalog
210 accesses configuration data in the datastores 214 and
216 through layers of abstraction provided by the table
system 218 (i.e., including logic table objects (LT), such as
logic table object 220, and data table objects (DTs), such as
data table object 222).

A globally unique database ID (identifier) called a “DID”
identifies each catalog database. A given DID guarantees a
minimum well-defined set of catalog tables, each table being
identified by and complying to the rules of a table ID (TID).
ADID is a data store independent identity, meaning that the
tables of that database can be distributed among multiple
datastores. Examples of datastores include the registry, type
libraries, SQL (structured query language) Servers, and the
NT Directory Service (NT DS), whereas examples of data-
bases include: server group databases, download databases,
and deployment databases.

A data table object, such as data table object 222, is a
datastore-dependent table object that exposes a table cursor
into a particular datastore. The table cursor provides a
well-defined table-oriented interface into the datastore while
hiding the location and format of the underlying datastore
itself. For example, a caller can use a table cursor to navigate
through the rows of a column in a table presented to the
caller by a table object.

Each data table object is bound to a particular datastore
accessible within the computer. For example, a data table
object may be bound to the registry to provide the registry
data in table form to a higher level (e.g., an overlaid logic
table object, catalog server object, or runtime catalog).
Another data table object may be bound to the NT Directory
Services to provide directory configuration data to a higher
level. As shown by data table objects 238 and 240, multiple
data table objects may be created for a single datastore (e.g.,
data table objects 238 and 240 are created by different logic
tables objects to provide access to the same datastore 242).

The data table object 222 populates one or more internal
caches with read or write data associated with the datastore

20

30

35

40

45

50

55

60

6

214. Queries to the datastore 214 are serviced by the cache
or caches through the data table object’s table interface.
Using at least one “update” method, data in the read cache
of data table object 222 may be refreshed from the datastore
214 and data in a write cache may be flushed to the datastore
214. Data table objects are described in more detail in U.S.
patent application Ser. No. 09/360,442, entitled “DATA
TABLE OBJECT INTERFACE FOR DATASTORE,”
assigned to the assignee of the present application, filed
concurrently herewith and incorporated herein by reference
for all that it discloses and teaches.

A logic table object, such as logic table object 220,
presents domain-specific table data by logically merging or
consolidating table data from multiple data table and/or
logic table objects, supplementing table functionality, and/or
synthesizing data into the table. Logic table objects in a
COM+ Catalog environment are type-independent abstrac-
tion layers between a caller (such as the runtime catalog 210)
and one or more datastores (such as datastores 214 and 216)
containing configuration information. A logic table object
typically sits atop one or more data table objects and
introduces domain-specific rules and processes to the under-
lying data table objects, although other configurations of
table systems are possible.

More specifically, a logic table object can logically merge
or consolidate configuration data from multiple data table
and/or logic table objects into a single table based on
predetermined logic (e.g., according to type). Furthermore,
a logic table object can supplement data table object func-
tionality by intercepting interface calls from a client and
adding to or overriding the underlying table object function-
ality (e.g., adding validation or security). Additionally, a
logic table object can synthesize data that is not available
from the underlying datastores or tables and present the
synthesized data as part of the table. Logic table objects are
described in more detail in U.S. patent application Ser. No.
09/360,440, entitled “A LOGIC TABLE ABSTRACTION
LAYER FOR ACCESSING CONFIGURATION
INFORMATION,” assigned to the assignee of the present
application, filed concurrently herewith and incorporated
herein by reference for all that it discloses and teaches.

The foregoing discussion has described the COM+ Cata-
log environment as used at runtime by an application. An
alternate use of a COM+ Catalog occurs at configuration-
time and may employ one or more catalog server objects
(CS) and one or more client tables. During configuration, an
administration tool, such as Microsoft’s Component Ser-
vices administration tool or COMAdmin Library, is used to
create and configure COM+ applications, install and export
existing COM+ applications, manage installed COM+
applications, and manage and configure services locally or
remotely. Accordingly, in addition to the illustrated
embodiments, an embodiment of the present invention may
be employed by a local administration tool managing an
application running on a remote computer system.

The exemplary administration tool 224 executes on the
client computer 200 in FIG. 2. An alternative administration
tool (such as administration tool 250) can execute on another
computer (such as server 204) to configure applications and
services executing in the computer. A catalog server object,
such as catalog server objects 226, 228, and 230, manages
configuration information on its computer. All administra-
tion requests to a computer, whether local or from another
computer, go to a catalog server object on that computer,
preferably through one or more abstraction layers, including
client table objects and logic table objects.

A client table object (CT) is analogous to a data table
object that binds to a particular local or remote catalog

US 6,377,960 B1

7

server object instead of a datastore, presenting the configu-
ration information marshaled by a catalog server object in
table form to the caller, such as the administration tool 224.
In an alternate embodiment, the logical merging function-
ality of the logic table object 234 and the communications
with multiple catalog server objects provided by client table
objects 232 and 236 may be combined into a single client
table object that binds to multiple catalog servers. The local
catalog server object 226 manages configuration data locally
on the client computer 200, while the remote catalog server
object 228 service catalog requests from the client table
object 232 for configuration information on its remote
computer. “Remote” does not necessarily imply that a
remote computer geographically distant from a local com-
puter. Instead, remote merely indicates a cross-computer
boundary, which may be bridged by a data bus, a network
connection, or other connection means.

To access available catalog data in the illustrated exem-
plary embodiment, the administration tool 224 optionally
causes a logic table object 234 to be created, which in turn
causes client table objects 232 and 236 to be created for
accessing available catalog server objects 226, and 228. The
local catalog server object 226 and the remote catalog server
object 228 marshal the configuration information stored
within their corresponding computers by causing creation of
underlying table systems and transferring the data back to
the client table objects 232 and 236 for presentation as table
data to the logic table object 234, which logically merges the
configuration information and presents the configuration
information to the administration tool 224 in table format. In
the illustrated embodiment, multiple domain-specific logic
table objects (such as logic table object 234) can reside
between the client table objects 232 and 236, and the
administration tool 224. Alternatively, the administration
tool 224 may cause only a single client table object (with or
without overlaying logic table objects) to be created to
access a single catalog server object on a local or remote
computer.

With reference to FIG. 3a, an exemplary computing
system for embodiments of the invention includes a general
purpose computing device in the form of a conventional
computer system 300, including a processor unit 302, a
system memory 304, and a system bus 306 that couples
various system components including the system memory
304 to the processor unit 300. The system bus 306 may be
any of several types of bus structures including a memory
bus or memory controller, a peripheral bus and a local bus
using any of a variety of bus architectures. The system
memory includes read only memory (ROM) 308 and ran-
dom access memory (RAM) 310. A basic input/output
system 312 (BIOS), which contains basic routines that help
transfer information between elements within the computer
system 300, is stored in ROM 308.

The computer system 300 further includes a hard disk
drive 312 for reading from and writing to a hard disk, a
magnetic disk drive 314 for reading from or writing to a
removable magnetic disk 316, and an optical disk drive 318
for reading from or writing to a removable optical disk 319
such as a CD ROM, DVD, or other optical media. The hard
disk drive 312, magnetic disk drive 314, and optical disk
drive 318 are connected to the system bus 306 by a hard disk
drive interface 320, a magnetic disk drive interface 322, and
an optical drive interface 324, respectively. The drives and
their associated computer-readable media provide nonvola-
tile storage of computer readable instructions, data
structures, programs, and other data for the computer system
300.

20

25

30

35

40

45

50

55

60

8

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 316, and a
removable optical disk 319, other types of computer-
readable media capable of storing data can be used in the
exemplary system. Examples of these other types of
computer-readable mediums that can be used in the exem-
plary operating environment include magnetic cassettes,
flash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), and read only
memories (ROMs).

A number of program modules may be stored on the hard
disk, magnetic disk 316, optical disk 319, ROM 308 or
RAM 310, including an operating system 326, one or more
application programs 328, other program modules 330, and
program data 332. A user may enter commands and infor-
mation into the computer system 300 through input devices
such as a keyboard 334 and mouse 336 or other pointing
device. Examples of other input devices may include a
microphone, joystick, game pad, satellite dish, and scanner.
These and other input devices are often connected to the
processing unit 302 through a serial port interface 340 that
is coupled to the system bus 306. Nevertheless, these input
devices also may be connected by other interfaces, such as
a parallel port, game port, or a universal serial bus (USB).
A monitor 342 or other type of display device is also
connected to the system bus 306 via an interface, such as a
video adapter 344. In addition to the monitor 342, computer
systems typically include other peripheral output devices
(not shown), such as speakers and printers.

The computer system 300 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 346. The
remote computer 346 may be a computer system, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer system
300. The network connections include a local area network
(LAN) 348 and a wide area network (WAN) 350. Such
networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter-
net.

When used in a LAN networking environment, the com-
puter system 300 is connected to the local network 348
through a network interface or adapter 352. When used in a
WAN networking environment, the computer system 300
typically includes a modem 354 or other means for estab-
lishing communications over the wide area network 350,
such as the Internet. The modem 354, which may be internal
or external, is connected to the system bus 306 via the serial
port interface 340. In a networked environment, program
modules depicted relative to the computer system 300, or
portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network
connections shown are exemplary, and other means of
establishing a communication link between the computers
may be used.

In an embodiment of the present invention, the computer
system 300 stores the configuration data and implementation
code providing the catalog infrastructure and disclosed and
claimed herein in accordance with the present invention. The
catalog infrastructure has without limitation one or more
datastores, catalog servers, runtime catalogs, server
applications, administration tools, dispensers, and wiring
databases. Specifically, one or more dispensers, preferably
including a table dispenser and a table object dispenser,
provide a table object to a caller providing location and type
independent access to configuration information stored in
one or more datastores.

US 6,377,960 B1

9

FIG. 3b illustrates a logical block diagram for the func-
tional modules present in an exemplary computing system
according to one preferred embodiment of the present inven-
tion. The computing system 300 comprises one or more
run-time process modules 362, one or more component
installer modules 361, and a RegDB registration module
363. Runtime modules 362 comprise application programs
and other executable processes that execute a set of com-
puting instructions on the computing system 300 to perform
any number of processing tasks. Typically, these application
programs are the programs controlled by a user of the
computing system 300 to perform a set of desired opera-
tions.

Component installer modules 361 comprise the set of
software processes that install one or more software com-
ponents onto computing system 300. Typically, these com-
ponent installer modules 361 are responsible for installing
large application programs that are developed by various
software developers. However, these modules 361 may
comprise any computational process executing upon com-
puting system 300 that creates and installs components
within the registration module 363 for use by other runtime
modules 362 in the performance of their respective func-
tions.

The RegDB registration module 363 maintains the system
component registration database, RegDB datastore, for use
by the runtime process modules 362 and the component
installer modules 361. The runtime process modules 362
interact with a RegDB runtime catalog module 371 to obtain
runtime catalog information from the RegDB datastore 373
when the runtime modules 362 are interacting with other
components within computing system 300. The component
installer modules 361 interact with the system application
372 when components, and their corresponding registration
data are being installed within computing system 300. The
operation of the RegDB registration module 363 is discussed
in more detail with reference to FIG. 4 below.

FIG. 4 illustrates a RegDB registration module and cor-
responding datastore according to an example embodiment
of the present invention. The RegDB datastore is used by the
software configuration system to maintain registry informa-
tion regarding software components installed within a com-
puting system. The entire registry database is stored within
the RegDB file and presented to a calling object using a data
table data structure.

The RegDB system comprises a runtime module 401, a
system application 402, a shared memory control block 403,
one or more shared read-only memory mapped file 421, and
a file system module 422. The runtime process 401 is
utilized to permit the computing system to activate software
modules installed within the system. The system application
402 is utilized to register software objects within the RegDB
datastore 426. The shared memory control block 403 is
utilized to maintain a set of system parameters used in
operation of the runtime process 401 and system application
process 402. The latest version number for the RegDB
datastore is among the parameters stored within the shared
memory control block 403. The shared read-only memory
mapped file 421 has a shared read-only memory used by the
runtime processes 401 to read the registration data corre-
sponding to the latest version of the RegDB datastore 426.
The file system module 422 comprises a mass storage
system utilized to maintain the various dated versions of the
RegDB datastore 426-428.

RegDB files 424-426 are COMPLIB database files with
12-digit hex version number embedded in the file names. For

20

25

35

40

45

50

55

60

10

example, RO00000001461.clb has version number 1461 in
hex, or 5217 in decimal. Since version number is only
incremented by 1 for each transaction, 12-digit hex number
ensures it’s virtually impossible for the number to reach the
upper limit Oxffffffffffff, so REGDB does not handle the
version number wrap around.

Each version of the RegDB file 424-426 is a snapshot of
the entire RegDB database. Runtime processes 401 look into
the latest snapshot of the REGDB 426 every time a new
COM component is activated, no matter it’s COM classic
component, or COM+ services component. RegDB should
attempt to ensure that the datastore lookup will not have any
noticeable performance impact on COM classic component
activation.

The runtime module 401 has a read-only data table object
406 that obtains the data for populating the data table from
the REGDBAPI 408 and a relational database engine mod-
ule 407. In a preferred embodiment, the relational database
engine 407 is a relational database engine used to read and
update complib files within a COM component system. In
alternate embodiments, this engine may comprise any rela-
tional database engine that interacts with a registration
database without deviating from the spirit and scope of the
present invention as recited within the attached claims.
REGDBAPI 408 is a library that implements a set of APIs
to help runtime processes to detect and open the latest
version of the RegDB files in the most efficient way. The
relational database engine module 407 is utilized to obtain
the necessary registration data from the shared read-only
memory mapped file 421 that possesses the registration
database corresponding to the latest version of the RegDB
datastore 426.

The system application process 402 has a background
thread module 415, a RegDB CRM Compensator module
413, a read/write data table object 414, a RegDB server
module 411, and a Complib engine module 412. The back-
ground thread module 415 is a thread in the system appli-
cation process executing concurrent with other processes on
a computing system to delete old versions of the RegDB
datastore files 424-425 once all processes on the computing
system are finished utilizing this version. Since new versions
of the datastore are created each time objects are registered
with the datastore, and since only the latest version of the
datastore are utilized by runtime processes 401, the prior
versions of the datastore may be deleted to conserve storage
within the file system 422 once all processes using a
particular version of the datastore are finished with that
particular version.

REGDBSERVER module 411 is the server side library
that ties with the Catalog Server component. As mentioned
earlier, all of the administrative requests including REGDB
updates have to go through the Catalog Server that’s running
in the System Application. The APIs implemented in the
REGDBSERVER module 411 do the actual work of trans-
action RegDB updates, as illustrated below in FIG. 6. The
read/write data table object 414 is the data structure utilized
to hold the changes being made to the RegDB datastore
during the execution of the software component installation
and registration process. Once all of the changes are made
within the data table object, the changes are made to the
RegDB datastore within the file system 422 as part of a
transaction process. The Complib engine module 412 is
utilized to update the RegDB files with the data from the
data table objects 414. The RegDB Compensator module
413 controls the two-phase data commit process used to
update the RegDB datastore using transactional processing
as discussed below in reference to FIG. 7.

US 6,377,960 B1

1

FIG. 5 illustrates a logical operation flow diagram for the
operations performed associated with a REGDBAPI 408
module according to one example embodiment of the
present invention. The sequence of operations performs a
3-level of version lookup from the fastest to the slowest. A
shared memory module check operation 501 attempts to
obtain the latest version number from the shared memory
control block 403. If this operation 501 is not successful, a
registry check operation 503 attempts to obtain the latest
version number from the system registry. If this second
operation 503 is not successful, a file system check operation
505 finds the latest RegDB file 426 from the file system
module 422. The latest version number is extracted from the
file name for the RegDB file 426 found. The operation 505
writes the obtained version number into the system registry.

The most straightforward way for latest version lookup is
to enumerate through every RegDB file 424-426, extract the
version number from the file name and do a comparison.
However, if every runtime process has to perform this step
whenever it creates a COM component, processing effi-
ciency would suffer. To address this issue, RegDB system
provides caching to improve the performance. When the
System Application 402 starts to run, it creates a shared
memory control block 403, finds the latest RegDB version
and writes the number into the control block 403. Since all
RegDB updates have to go through the System Application
402, it is responsible for updating the version number in the
control block 403 immediately after a new RegDB file has
been created. Therefore, as long as the System Application
402 is running, runtime processes 401 check the latest
version directly from the control block 403. While the
System Application 402 is not running, the first runtime
process 401 will find the latest version from the disk and put
it into a Registry key. All the subsequent processes or
operations only need to get that value from the Registry.
Later, when the System Application 402 starts up again, the
cached Registry value will be deleted.

After version lookup has finished, REGDBAPI opens that
latest RegDB file through COMPLIB engine. To minimize
the system memory usage, RegDB file will always be
opened as read only memory-mapped file shared between
runtime processes. The naming scheme for the file mapping
objects is similar to that for the files. It’s a fixed format with
version number embedded. The mapping for
R000000001461.clb will be named as
R 000000001461 SMEM _, for instance. The mapping
name is passed to the COMPLIB API along with create and
open flag. The engine will try to open this file-mapping
object and map into its process, or create a file mapping with
this name if it doesn’t exist yet.

COMPLIB API could fail to create to open the file
mapping for various reasons. For the errors we expect and
know how to recover from, REGDBAPI 408 has the retry
logic to go through the flow chart in FIG. § once again
before it returns an error. One example is latest RegDB file
becomes corrupted and COMPLIB engine 412 fails to open
the file. REGDBAPI 408 will delete the corrupted file, find
the previous version, which now becomes latest, and call
COMPLIB API to open it.

FIG. 6 illustrates a logical operation flow diagram for the
operations performed, when there is a transaction in progress
process implemented in the REGDB SERVER 411 module,
according to one example embodiment of the present inven-
tion. When an admin client process calls into Catalog Server,
it may already have a transaction in progress. In this case,
transaction context flows from the client process to the
Catalog Server. On the other hand, if it does not have a

50

12

transact ion yet, Catalog Server will start a new transaction.
All this happens automatically since Catalog Server is a
COM+ component configured as “Require a Transaction.”
REGDB transactions are serialized by NT event object.

When an incoming thread calls an update method on the
Catalog Server 601, either there’s no transaction being
processed, or there is one. The transaction ID will always be
retrieved from the context of the incoming thread by the Get
ID operation 602. Transaction check operation 603 deter-
mines if a transaction is in progress. If no transaction is
present, the thread can proceed to do the work in Start
transaction 604. Its transaction ID will be saved in a global
variable. Because it’s a new transaction, REGDBSERVER
creates a CRM Clerk object, which is a part of the CRM
framework, and register our REGDB CRM Compensator to
enlist the transaction. Then the latest REGDB file is copied
to a temporary file with a hard coded name, say REGDB.tmp
in Copy operation 605. REGDB.tmp is opened by COM-
PLIB engine as in memory data structures, so the update
operation 606 can perform the updates in memory through
the COMPLIB interface.

If a transaction is present, the transaction check operation
branches to the compare ID operation 610. In the compare
ID operation 610, transaction ID of the incoming thread is
compared with the saved ID of the transaction currently in
progress. If they found to be different in test operation 611,
the thread will be blocked until the current transaction
commits or aborts in inhibit operation 612. If they are the
same, then the present transaction is a transaction composed
by the client process and it has called into Catalog Server
before. Now it calls again to do more RegDB updates within
the same transaction scope 604-606. Obviously, the pro-
cessing should not be blocked. Moreover, RegDB CRM
Compensator is already registered for this transaction and
REGDB.tmp 423 has been opened. All that needs to occur
is to make additional changes to the RegDB.tmp file 423
through the COMPLIB interface.

FIG. 7 illustrates a logical operation flow diagram for the
operations performed, when there is a transaction commit
process implemented in the REGBDSERVER 411 module,
according to one example embodiment of the present inven-
tion. If the RegDB transaction is composed by admin client
process, the client process controls when to commit or abort
the transaction. Otherwise, Catalog Server is the root of the
transaction. It is configured such that the transaction will
commit or abort the moment the call returns from the
Catalog Server. FIG. 7 shows the sequence of operations that
occur at commit time. In the COM+ world, Distributed
Transaction Coordinator (DTC) is the transaction manager.
It uses two-phase commit protocol as shown in FIGS. 7a and
7b respectively.

After a set of consistent RegDB updates within a trans-
action scope has finished successfully, the root component of
the transaction decides whether the entire transaction should
commit. DTC will then send the PREPARE notification to
the REGDB CRM Compensator 413 in prepare operation
701. The Compensator 413 in turn calls an API on REGDB-
SERVER 411 library. The API then calls Save () method on
the COMPLIB interface to save all the in memory modifi-
cations to REGDB.tmp 423 on disk in save operation 702.
If Save () succeeds, the API returns SUCCEED code to the
compensator 413, which returns it to DTC. DTC then
determines it’s OK to proceed to the second phase, that is
COMMIT.

When the Compensator 413 receives COMMIT notifica-
tion in commit operation 711, it again calls into REGDB-

US 6,377,960 B1

13

SERVER 411. In rename operation 712, REGDBSEVER
next performs is to rename REGDB.tmp 423 to the new
version of RegDB, ie. a file with a Rxxxxxxxxxxxx.clb
name, where XXXXXXxXxxxxxx equals the former latest
version number plus one Immediately thereafter in update
version number operation 713, the shared control block 403
is updated to have the new version number. At this point, the
updates within the transaction are visible to all the runtime
processes. REGDBSERVER in signal operation 714 also
sets a REGISTRY key that runtime processes listen on, so
they know it’s time to flush the cache in the run-time catalog
and re-get data from the latest REGDB. In addition, the old
REGDRB file name is added to a list to be lazily deleted by
a background thread running in the System Application 402
in delete operation 715. Finally in unlock operation 716, the
event object is signaled to unblock a waiting thread. During
the PREPARE phase 701-702, if Save O fails, a FAIL code
is returned, and DTC aborts the transaction without further
notification.

REGDB transaction is completely isolated from runtime
processes. And it’s atomic. Using a temporary file for the
updating REGDB guarantees the isolation. The worst case
scenario is when the System Application 402 crashes. As a
result, REGDB.tmp 423 either contains inconsistent data or
becomes totally corrupted. When that happens, the transac-
tion simply aborts. The latest snapshot of REGDB in the file
system is intact. Note this approach also makes concurrent
runtime readers and a single administrative writer. Without
this process, file-sharing problem occurs between simulta-
neous readers and writers. When COMPLIB opens a file for
writing, it needs an exclusive lock on the file. Most of the
time, however, the latest version of the REGDB has already
been opened for reading by runtime processes. This fact
makes it impossible for the System Application 402 to take
exclusively lock the file. By copying it to a temporary and
open that one instead for writing solves the issue. The
atomicity of the transaction relies on the fact that renaming
afile is an atomic action if the new name is on the same drive
as the old name.

The foregoing description of the exemplary embodiment
of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It is intended that the scope of the
invention be limited not with this detailed description, but
rather by the claims appended hereto.

What is claimed is:

1. A method for installing software components onto a
computing system and registering the installed software
components within a registration datastore of the computing
system having a shared memory control module, a registry
having a signaling key, a file system, a registration datastore
compensator, a delete file list, and a shared read-only
memory mapped file module, the method comprising:

obtaining a first latest version number for the registration

datastore;

opening a registration data file corresponding to the

registration datastore having the first latest version
number;

storing the registration data file within a data table object,

the data table object corresponds to a temporary version
of the registration data file;

modifying the registration data file within the data table

object to add registration data corresponding to the
installed software components to the registration datas-
tore;

10

25

30

35

45

60

65

14

updating the registration datastore by creating a new
version registration data file having a new latest version
number using a two-phase transaction process; and

deleting the registration data file corresponding to the
registration datastore having the first latest version
number identified on the delete file list after the regis-
tration data file is no longer in use.
2. The method according to claim 1, wherein the obtaining
a first latest version number for the registration datastore
comprises:
obtaining the latest version number from the shared
memory control block; if the latest version number
obtained from the shared memory control block is

not valid, obtaining the latest version number from the
registry; if the latest version numbers obtained from
both the shared memory control

block and the registry are not valid, obtaining the latest

version number from the file system.
3. The method according to claim 1, wherein the updating
the registration datastore by creating a new version regis-
tration data file having a new latest version number using a
two-phase transaction process comprises:
saving all updates to the registration datastore contained
within the data table in a prepare phase; and

updating the registration data file to create a new version
registration data file having a new latest version num-
ber in a commit phase.

4. The method according to claim 3, wherein saving all
updates to the registration datastore in the prepare phase
comprises:

notifying the registration datastore compensator to initiate

the prepare phase; and

saving all updates to the registration datastore contained

within the data table into the temporary version of the
registration data file.

5. The method according to claim 3, wherein updating the
registration data file to create the new version registration
data file having a new latest version number comprises:

notifying the registration datastore compensator to initiate

the commit phase;

renaming the temporary version of the registration data

file to the new version registration data file having a
new latest version number;

updating the latest version number within the shared

control memory block;

setting the signaling key within the registry to signal an

update to the registration datastore; and

adding the a registration data file corresponding to the

registration datastore having the first latest version
number to the delete file list.

6. The method according to claim 1, wherein updating the
registration data file to create the new version registration
data file having the new latest version number comprises:

obtaining a transaction ID for the updating registration

data file operation from a current context of the updat-
ing operation;

determining if a transaction is currently in progress;

if a transaction is in progress, obtain a transaction ID for

the transaction in progress and perform the following:

comparing transaction ID for the updating registration
data file operation from a current context of the
updating operation with the transaction ID for the
transaction in progress; and

if the compared transactions IDs are the same, storing
updates from the data table into the temporary ver-

US 6,377,960 B1

15

sion of the registration data file to complete the
updating the registration data file to create the new
version registration data file having the new latest
version number;

if the compared transactions IDs are not the same,
block further operations until transaction in progress
has completed;

registering the registration datastore compensator to begin
a transaction;

copying the registration data file corresponding to the first
latest version number to the temporary registration data
file and opening the temporary registration data file;
and

storing updates from the data table into the temporary

version of the registration data file to complete the
updating the registration data file to create the new
version registration data file having the new latest
version number.

7. The method according to claim 1, wherein the deleting
the registration data file comprises:

adding the registration data file to the delete file list; and

when the registration file is no longer in use by any

process, deleting files contained on the delete file list.

8. The method according to claim 7, wherein the deleting
files contained on the delete file list is performed by a
background thread, the background tread repeatedly
attempts to delete the files on the delete file list and succeeds
in deleting the files once the files are no longer in use.

9. A computer-readable medium having computer-
executable instructions for the method recited in claim 1.

10. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a computer
program of instructions for executing a computer process
performing the method recited in claim 1.

11. A method for installing software components onto a
computing system and registering the installed software
components within a registration datastore of the computing
system having a shared memory control block, a registry
having a signaling key, a file system, a registration datastore
compensator, a delete file list, and a shared read-only
memory mapped file module, the method comprising:

obtaining the latest version number from the shared

memory control block;

if the latest version number obtained from the shared

memory control block is not valid, obtaining the latest
version number from the registry;

if the latest version numbers obtained from both the

shared memory control block and the registry are not
valid, obtaining the latest version number from the file
system,

opening a registration data file corresponding to the

registration datastore having the first latest version
number;

storing the registration data file within a data table, the

data table corresponds to a temporary version of the
registration data file;
modifying the registration data file within the data table to
add registration data corresponding to the installed
software components to the registration datastore;

notifying the registration datastore compensator to initiate
the prepare phase;

saving all updates to the registration datastore contained

within the data table into the temporary version of the
registration data file; notifying the registration datas-
tore compensator to initiate the commit phase;

16

renaming the temporary version of the registration data
file to the new version registration data file having a
new latest version number;
updating the latest version number within the shared
s control memory block;

setting the signaling key within the registry to signal an
update to the registration datastore;

adding the a registration data file corresponding to the
registration datastore having the first latest version
number to the delete file list; and

deleting the registration data file corresponding to the
registration datastore having the first latest version
number identified on the delete file list after the regis-
tration data file is no longer in use.

12. A computer-readable medium having computer-

executable instructions for the method recited in claim 11.

13. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a computer
program of instructions for executing a computer process
performing the method recited in claim 11.

14. A system for installing software components onto a
computing system and registering the installed software
components within a registration datastore of the computing
system having, the system comprising:

a shared memory control block for maintaining a latest

version number for the registration database;
a system application module for updating the registration
datastore;
a real-time catalog module for providing software com-
ponent registration data to installed software compo-
nents during their run-time execution; and
a file system module having a plurality of data files for
storing the registration datastore;
wherein the system application module updates the reg-
istration datastore by:
copying the registration datastore into a temporary
version of the datastore;

storing the updates to the registration datastore into the
temporary version of the datastore; and

when all updates are successfully included within the
temporary version of the datastore, renaming the
temporary version of the datastore to the registration
datastore, updating the version number for the cur-
rent version of the registration datastore, and signal-
ing the update to the registration datastore using a
signaling key in a system registry.

15. The system according to claim 14, wherein the system
application module comprises:

a registration datastore compensator module performing
all transaction related operations during the updating of
the registration datastore;

a background thread modules for deleting versions of the
registration datastore no longer in use;

a read/write data table for storing updates to the registra-
tion datastore temporarily during the installation and
registering of the software components;

a relational database engine module for saving the updates
to the registration datastore from the read/write data
table to the temporary version of the registration datas-
tore; and

a registration database server module for maintaining the
version number for the registration datastore within the
shared memory control block.

10

20

30

35

40

45

55

60

65

