United States Patent

US006622185B1

12 10) Patent No.: US 6,622,185 B1
9 ’
Johnson et al. 5) Date of Patent: Sep. 16, 2003
(54) SYSTEM AND METHOD FOR PROVIDING A OTHER PUBLICATIONS
REAL-TIME PROGRAMMABLE INTERFACE « . . .
TO A GENERAL-PURPOSE NON-REAL-TIME Storybook Fantasy—New Gaming Device Submittal and
COMPUTING SYSTEM Compliance Report”, Innovative Gaming, Inc., 88 pgs. (Feb.
23, 1999).
(75) Inventors: Peter J. Johnson, Reno, NV (US); Eric * cited by examiner
Bendall, Reno, NV (US)
Primary Examiner—S. Thomas Hughes
(73) Assignee: Innovative Gaming Corporation of Assistant Examiner—Carmen D. White
America, Las Vegas, NV (US) (74) Antorney, Agent, or Firm—Merchant & Gould
(*) Notice: Subject to any disclaimer, the term of this 7 ABSTRACT
patent is extended or adjusted under 35 Asystem and method providing read-time external signals to
U.S.C. 154(b) by O days. and from a gaming application executing within a platform
independent programming environment on a computing
(21) Appl. No.: 09/395,647 system. The system has an input packet queue located within
) Filed: Sen. 14. 1999 a block of system RAM, a main processing module, and an
(22) Filed: €p- 1% intelligent I/O interface module all coupled to the main
(51) Int. CL7 (oo GOG6F 13/24 system bus. The system generates an input signal data packet
(52) US.CL 710/48; 710/260; 463/42:; in response to a change in state of one or more external
’ ’ 463 /43’ signals. The intelligent I/O interface module itself includes
(58) Field of Search 709/200; 710/19-26 a control processor, an plurality of external signal interfaces,
710 /260263—264 48 711 /164 101. 103, and a dual-port RAM. The control processor generates and
149 156. 216: 7,12/1,60—161‘ ,463/4;2 e stores the input signal data packet within the dual-port RAM
T ’ ’ before asserting an interrupt signal to the main processing
: module. Finally, the interrupt signal causes the main pro-
(56) References Cited ¥y pt sig p

U.S. PATENT DOCUMENTS

cessing module to transfer the input signal data packet from
the dual-port RAM to the input packet queue. The main
processing system retrieves the input signal data packets

6,006,286 A * 12/1999 Baker et al. 710722 . : :
6,081,852 A * 6/2000 Bakercooocooovvv... 710724 from the input queue by continually polling the queue and
6,333,038 Bl * 12/2001 Baker 370/503 processing the packets in the order received.
6,356,951 BL * 3/2002 Gentry, Jr. 709/250
6,389,468 B1 * 5/2002 Muller et al. 709/226 7 Claims, 8 Drawing Sheets
PROCESSING MODULE ‘ m;%?m SYSTEM ,320
303 RAM
313 —
[CONTROLLER]. {NTERRUFTI
[T] 305
341 N 331
GAMING LT o 321 Tra MGE 1 33,
MACHINE R PORT | - RAM IMAGE §2
USER Pl | R »
INTERFACE A < *
333
g 312 X RAM MAGE N |
Y 311 304
302 310
COMPUTING SYSTEM
~N

301

U.S. Patent Sep. 16, 2003 Sheet 1 of 8 US 6,622,185 Bl

F1G.1
103
1 1
)
GAMING MACHINE| -104
USER INTERFACE
MODULE
/ 101
] = ” 102

©

MASS STORAGE DEVICE

COMPUTING SYSTEM

US 6,622,185 Bl

30A30 3DVIOLS SSYA

102

%6

Sheet 2 of 8

Sep. 16, 2003

U.S. Patent

\
NALSAS ONLNJWOD
2T €Tz
MAINI JINGON
Vuoﬁ%m SSYN o JVIMAINI O/ ff=e—
INIOMTTINI
" w2 TINGON
= JOVANIUNI
AVIdSIC
-
v
/ NALSAS L 28~
gee w—e HOSSID0U

£1Z
\

Hip-

FINAON
JOVAA3INI d3SN
NIHOWN ONINYO

14%4

3

¢'old

US 6,622,185 Bl

Sheet 3 of 8

Sep. 16, 2003

U.S. Patent

{0y

NALSAS ONLLNANOD

0E._
T ELN
cee” %
*
. 3
Nnnxlllulnlullu IV Ava
loo”] TR LR 1Z¢
B mmm—
p W
0ZS NALSAS

0LE,
LIS
3
413 v
Ny 4
T ™ lod | w_
ik n L¥S
LANYYALNI| -
CIe
€OE,
1dNYYAINI
.Illl.lln|llll|..'|.
GOL [TINGON SNISSIN0Y
il {iiren

cog

JOVARLAUNI
y3sn
IANIHOVN
ONINVO

¢old

US 6,622,185 Bl

Sheet 4 of 8

Sep. 16, 2003

U.S. Patent

10y
TINGON 80N
cly ciy
LIy \ zog
_\
IVIEINL
u3sN
INIHOVI
VRN fet—— AHONIN - JOVINIINI ONINYD
=] S5SN8 140d4=vna o/1
W3LSAS TIBVWAVEOOUd
i
Loy !
INOHIWNES oLy Yiv~ syzisiony
04INOD 8Ol - JO4INOD
T S——
cqc ANOKIN AVIO0Nd AVREN
TN /80SS3008d T0UINOD
914

U.S. Patent

Sep. 16, 2003

FIG.5

Sheet 5 of 8

501

US 6,622,185 Bl

INMALIZE MODULE

LAUNCH GAMING
APPLICATION MODULE &
INMALIZE SYSTEM
COMPONENTS

502

T

CONFIGURE lI0B MODULE

CONFIGURE 1/0 PORTS
ON 1I0B AS REQUIRED
BY PARTICULAR GAME

503

]

START MODULE

RECEIVE START COMMAND
TO SYNC OPERATION OF 0B
WITH GAME APPLICATION

_- 504

o

POLL OB QUEUE MODULE
POLL HI0B QUEUE
FOR 1I0B STATE
PACKET

505

i

PROCESS INPUT MODULE

{F PRESENT, RETRIEVE &
PROCESS 0B STATE
PACKET — IF IDLE, PERFORM
OTHER OPERATION

|_ 506

507
ERROR

508

U.S. Patent

FIG.6

Sep. 16, 2003

Sheet 6 of 8

601

<8

Y

US 6,622,185 Bl

CONFIGURE lI0B MODULE | _ 602
CONFIGURE 1/0 PORTS
ON H0B AS SPECIFIED
BY MAIN PROCESSOR
START 0B _MODULE - 603
RECEVE START COMMAND
TO SYNC OPERATION OF Ii0B
WITH GAME APPLICATION
MONITOR 10 PORTS MODULE | - 604
MONITOR AND DEBOUNCE
ALL 10 PORTS TO DETERMINE
A STATE CHANGE
605
GENERATE OB PACKET RECEIVE COMMAND
MODULE RECEIVE AND READ
GENERATE 1I0OB STATE COMMAND FROM MAIN
PACKET WITH TIMESTAMP A - PROCESSOR MODULE
-STORE IN DUAL PORT RaM| 610 611
! _- 606 612 GENERATE_SIGNAL COMMAND
INTERRUPT MODULE DECODE COMMAND &
GENERATE INTERRUPT & | GENERATE OUTPUT
WAT FOR SIGNAL
ACKNOWLEDGEMENT FROM
PROCESSOR {
613 | -.lI0B ACK COMMAND
607 TRANSMIT
YES ACKNOWLEDGEMENT T0
MAIN
NO PROCESSOR MODULE

U.S. Patent Sep. 16, 2003 Sheet 7 of 8 US 6,622,185 Bl

FIG.7

701

CSmRT)

INTERRRUPT MODULE 702

MAIN PROCESSOR RECEIVES
OB INTTERRUPT AND ENTERS
INTERRUPT SERVICE ROUTINE

!

PACKET TRANFER MODULE — 703

[TERRUPT SERVICE ROUTINE TRANSFERS
TIME STAMP AND 1l0B DATA PACKET
FROM 1IOB DUAL PORT RAM TO (IOB

INPUT DATA QUEUE

;

ACKNOWLEDGE MODULE _-704

INTERRUPT SERVICE ROUTINE PROVIDES
INTERRUPT ACKNOWLEDGEMENT SIGNAL

TO 1I0B CONTROL PROCESSOR

U.S. Patent Sep. 16, 2003 Sheet 8 of 8 US 6,622,185 Bl

808

E,

*

" o
E ®
o L8
E[®
3

0
b 8
w
>
£

FIG.8
801
N

US 6,622,185 B1

1

SYSTEM AND METHOD FOR PROVIDING A

REAL-TIME PROGRAMMABLE INTERFACE

TO A GENERAL-PURPOSE NON-REAL-TIME
COMPUTING SYSTEM

FIELD OF THE INVENTION

This invention relates in general to a system and method
for providing a real-time programmable interface to a
general-purpose non-real-time computing system. More
particularly, this invention relates to a method and apparatus
providing a real-time programmable interface to a general-
purpose non-real-time computing system used to implement
a gaming machine using a platform independent program-
ming language that is capable of operating within a distrib-
uted computing environment.

BACKGROUND OF THE INVENTION

Computer-based gaming machines are becoming increas-
ingly commonplace to construct gaming devices such as slot
machines, video poker games, and video roulette wheels.
These automated games utilize computing systems contain-
ing software modules to implement gaming logic. These
computing systems also utilize computer video display
devices and other computer controlled display devices to
present gaming players with images of the various gaming
apparatus being implemented.

These computer-based gaming systems replace mechani-
cal systems such as slot machines comprising a plurality of
rotating wheels and associated mechanical logic. The com-
puting systems utilize a random number generator to deter-
mine a game outcome that statistically appears to be random
in nature. The random numbers obtained from a random
number-generating module are used to determine which
symbols on the wheels of a slot machine are to be displayed
when the game concludes a play. Similarly, these random
numbers are used to shuffle standard decks of playing cards
used in other games of chance.

These computer-based gaming machines also comprise
software modules which when working together implement
the rules of a particular game of chance. For a slot machine,
these rules include the pay-out tables used to determine any
winnings paid to a player for a particular combination of
symbols shown on the rotating game wheels. Finally, the
computer gaming machines comprise software modules
which when working together display a series of images on
the display device to simulate the appearance and operation
of a gaming machine. These display modules typically
comprise both video and audio output modules to provide a
game player with a sensory experience comparable to the
mechanical gaming machines.

Gaming machines that accept wagers and provide win-
ning payouts are under a wide variety of regulatory over-
sight procedures and provisions from authorities of the
various jurisdictions that permit the use of these devices.
These oversight procedures and provisions are concerned in
part with providing a level of assurance that the games
operate in the manner advertised. The operation of the
behavior of the random number generator, its relationship to
the outcome of the game implemented, and the winning
pay-out tables are part of the functions of these gaming
devices which are inspected. The procedures for obtaining
regulatory approval for each gaming device may be a long,
complicated, and expensive undertaking on the part of the
gaming machine manufacturer and its customers, gaming
establishment operators.

10

15

20

30

35

40

45

50

55

60

65

2

At the same time, these computer controlled gaming
machines are becoming based upon standard computing
system components to reduce the cost of the development
and deployment of these gaming machines. This reduction in
cost occurs from the ability to develop multiple gaming
machine implementations based upon a single gaming
machine architecture. As part of the effort to allow the
development of multiple gaming machine implementations
based upon a single computer based gaming machine
architecture, two additional inventions have been developed.

Typically, the gaming application modules have not been
developed using a platform independent programming
environment, high-level programming languages, and mod-
ern operating system that are needed to support both a rapid
and efficient gaming application module development pro-
cess as well as support game application execution within a
distributed processing environment. This situation has
caused each gaming application module to be a custom
written programming module that does not typically contain
a significant amount of reusable code that would permit a
simple and easy modification of an existing game to support
an new implementation. Part of the problems associated
with the failure to use these more modern programming
environments is the need to real-time or near-real-time
response times to the occurrence of state changes on external
signals representing inputs from gaming machine user inter-
face module.

With the ability to more easily obtain approval for new
gaming implementations and the ability to rapidly change
from one game to another while meeting the demands of the
gaming regulators, gaming establishments are provided with
an improved ability to more readily change the gaming
devices present in their establishments to satisfy the interests
of their gaming players. The present invention provides a
software architecture for implementing computer-based
gaming machines to address the above problems in prior
systems.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a system and
method for providing a real-time programmable interface to
a general-purpose non-real-time computing system. The
present invention solves the above-described problems by
providing a method and apparatus providing a real-time
programmable interface to a general-purpose non-real-time
computing system used to implement a gaming machine
using a platform independent programming language that is
capable of operating within a distributed computing envi-
ronment.

Other embodiments of a system in accordance with the
principles of the invention may include alternative or
optional additional aspects. One such aspect of the present
invention is a method for providing read-time external
signals to a platform independent programming environ-
ment executing upon a computing system. The computing
system includes an input packet queue, an main processing
module, and an intelligent I/O interface module. The intel-
ligent I/O interface module has a control processor, an
plurality of external signal interfaces, and a dual-port RAM.
The method comprises detecting a change in state of at least
one of the external signals by the control processor, gener-
ating a interface state packet containing representations of
the current state of all external interface signals, storing the

US 6,622,185 B1

3

interface state packet within the dual-port RAM, asserting
an interrupt signal from the control processor to the main
processing module to indicate the presence of the interface
state packet within the dual-port RAM; and receiving an
acknowledgement signal asserted by the main processing
module to indicate that the main processing module has
transferred the interface state packet from the dual-port
RAM to the input packet queue.

Another aspect of the present invention is a method for
providing read-time external signals to a platform indepen-
dent programming environment exXecuting upon a comput-
ing system. The computing system includes an input packet
queue, an main processing module, and an intelligent I/O
interface module. The intelligent I/O interface module has a
control processor, an plurality of external signal interfaces,
and a dual-port RAM. The method comprises receiving an
interrupt signal from the control processor by the main
processing module to indicate the presence of the interface
state packet within the dual-port RAM, transferring the
interface state packet from the dual-port RAM to an input
packet queue, and generating an acknowledgment signal
asserted by the main processing module to the control
processor to indicate that the main processing module has
transferred the interface state packet from the dual-port
RAM to the input packet queue

Yet another aspect of the present invention is a method for
providing read-time external signals from a platform inde-
pendent programming environment executing upon a com-
puting system. The computing system has an input packet
queue, an main processing module, and an intelligent I/O
interface module. The intelligent I/O interface module
includes a control processor, an plurality of external signal
interfaces, and a dual-port RAM. The method comprises
receiving a output change in state command from the main
processing module for least one of the external signals,
decoding the output change in state command by the control
processor, generating a change in state for at least one
external output signal by the control processor, and trans-
mitting an acknowledgement signal to the main processing
module to indicate that output state in change command has
been completed by the control processor.

Yet another aspect of the present invention is a method for
providing real-time external signals from a platform inde-
pendent programming environment executing upon a com-
puting system. The computing system includes an input
packet queue, a main processing module, and an intelligent
I/O interface module. The intelligent I/O interface module
has a control processor, an plurality of external signal
interfaces, and a dual-port RAM. The method comprises
generating a output change in state command by the main
processing module for least one of the external signals and
storing the output change in state command within the
dual-port RAM, retrieving the output change in state com-
mand from the dual-port RAM and decoding the output
change in state command by the control processor, gener-
ating a change in state for at least one external output signal
by the control processor, and receiving an acknowledgement
signal by the main processing module to indicate that output
state in change command has been completed by the control
Processor.

Yet another aspect of the present invention is a method for
providing real-time external signals to and from a gaming
application executing within a platform independent pro-
gramming environment on a computing system. The com-
puting system having an input packet queue, an main
processing module, and an intelligent I/O interface module.
The intelligent I/O interface module having a control

10

15

20

25

30

35

40

45

55

60

4

processor, an plurality of external signal interfaces, and a
dual-port RAM. The method comprises detecting a change
in state of at least one of the external signals by the control
processor, generating a interface state packet containing
representations of the current state of all external interface
signals, storing the interface state packet within the dual-
port RAM, asserting an interrupt signal from the control
processor to the main processing module to indicate the
presence of the interface state packet within the dual-port
RAM. The method further comprises receiving an acknowl-
edgement signal asserted by the main processing module to
indicate that the main processing module has transferred the
interface state packet from the dual-port RAM to the input
packet queue, receiving a output change in state command
from the main processing module for least one of the
external signals, decoding the output change in state com-
mand by the control processor, generating a change in state
for at least one external output signal by the control
processor, and transmitting an acknowledgement signal to
the main processing module to indicate that output state in
change command has been completed by the control pro-
CESSOL.

Yet another aspect of the present invention is a system for
providing real-time external signals to and from a gaming
application executing within a platform independent pro-
gramming environment on a computing system. The system
comprises an input packet queue located within a block of
system RAM coupled to a main system bus, a main pro-
cessing module coupled to the main system bus, and an
intelligent I/O interface module coupled to the main system
bus for generating an input signal data packet in response to
a change in state of one or more external signals. The
intelligent I/O interface module comprises a control
processor, an plurality of external signal interfaces, and a
dual-port RAM. The control processor generates and stores
the input signal data packet within the dual-port RAM
before asserting an interrupt signal to the main processing
module. Finally, the interrupt signal causes the main pro-
cessing module to transfer the input signal data packet from
the dual-port RAM to the input packet queue.

Yet another aspect of the present invention is a apparatus
for providing read-time external signals to and from a
gaming application executing within a platform independent
programming environment on a computing system. The
computing system having an input packet queue, an main
processing module, and an intelligent I/O interface module.
The intelligent I/O interface module having a control
processor, an plurality of external signal interfaces, and a
dual-port RAM. The apparatus comprises means for detect-
ing a change in state of at least one of the external signals
by the control processor, means for generating a interface
state packet containing representations of the current state of
all external interface signals, means for storing the interface
state packet within the dual-port RAM, means for asserting
an interrupt signal from the control processor to the main
processing module to indicate the presence of the interface
state packet within the dual-port RAM, means for receiving
an acknowledgment signal asserted by the main processing
module to indicate that the main processing module has
transferred the interface state packet from the dual-port
RAM to the input packet queue, means for receiving a
output change in state command from the main processing
module for least one of the external signals, means for
decoding the output change in state command by the control
processor, means for generating a change in state for at least
one external output signal by the control processor; and
means for transmitting an acknowledgment signal to the

US 6,622,185 B1

5

main processing module to indicate that output state in
change command has been completed by the control pro-
CESSOr.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a computing system according to one
embodiment of the present invention;

FIG. 2 illustrates a computing system used to implement
a computer controlled gaming machine according to another
embodiment of the present invention;

FIG. 3 illustrates computing system used to implement a
gaming machine with an IIOB module according to one
possible embodiment of the present invention;

FIG. 4 illustrates in detail an IIOB module in detail
according to yet another embodiment of the present inven-
tion;

FIG. 5 illustrates an operational flow diagram for a
gaming application module utilizing an IIOB module
according to another embodiment of the present invention;

FIG. 6 illustrates an operational flow diagram for a control
processor within an IIOB module according to yet another
possible embodiment of the present invention;

FIG. 7 illustrates an operational flow diagram for an
interrupt service module for responding to an interrupt
generated by an IIOB module according to yet another
possible embodiment of the present invention; and

FIG. 8 illustrates a IIOB input queue data packet accord-
ing to one possible embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description of the exemplary
embodiment, reference is made to the accompanying draw-
ings which form a part hereof, and in which is shown by way
of illustration the specific embodiment in which the inven-
tion may be practiced. It is to be understood that other
embodiments may be utilized as structural changes may be
made without departing from the scope of the present
invention.

The embodiments of the invention described herein are
implemented as logical operations in a telecommunications
system having connections to a distributed network such as
the Internet. The logical operations are implemented (1) as
a sequence of computer implemented steps running on a
computer system and (2) as interconnected machine mod-
ules running within the computing system. This implemen-
tation is a matter of choice dependent on the performance
requirements of the computing system implementing the
invention. Accordingly, the logical operations making up the
embodiments of the invention described herein are referred
to as operations, steps, or modules. It will be recognized by
one of ordinary skill in the art that these operations, steps,
and modules may be implemented in software, in firmware,
in special purpose digital logic, and any combination thereof
without deviating from the spirit and scope of the present
invention as recited within the claims attached hereto.

The present invention provides a system and method for
providing a real-time programmable interface to a general-
purpose non-real-time computing system. In the preferred
embodiment, the computing system is a computer controlled
gaming machine in which the gaming machine modules are
implemented using a platform independent programming

10

15

20

25

30

35

45

50

55

60

65

6

language that is capable of operating within a distributed
computing environment. One skilled in the art will recog-
nize that the present invention may be used with any
application module implemented using a platform indepen-
dent programming language that is capable of operating
within a distributed computing environment without devi-
ating from the spirit and scope of the present invention.

FIG. 1 illustrates a computing system using a CD-ROM
as a mass storage device according to one embodiment of the
present invention. The present invention relates to a system
and method for verifying the contents of a mass storage
device 102 attached to a computing system 101 for use in
storing application modules and data within a file system.
The computing system 101 executes the application modules
stored on the mass storage device 102 to generate images to
be displayed on a display device 103.

In the preferred embodiment, the computing system 101
is implemented using a computing system typically referred
to as a personal computer as illustrated in FIG. 2. The
computing system typically uses a PCI type system bus to
implement the system communications bus 225. This choice
to implement the preferred embodiment permits the main
processing module 221, the display interface module 222,
and the mass storage interface module 224 to be imple-
mented with a wide variety of commonly available system
components. This choice also permits the periodic improve-
ment of the computing system 201 with the upgrade of one
of these modules as new and faster computing modules
become available. The preferred embodiment utilizes a main
processing module 222 based upon a Pentium II processor
manufactured by the Intel Corp. One of ordinary skill in the
art will recognize that this processing unit may be based
upon any number of alternate processing units manufactured
by Advanced Micro Devices and other manufacturers as
well as a PowerPC processor manufactured by IBM Corpo-
ration and Motorola.

The computing system 201 has a block of system random
access memory (RAM) 225 for use in storing application
modules and data for use when implementing a gaming
machine. The computing system 201 has an intelligent input
and output interface module (IIOB) 223 for interfacing the
computing system 201 with a plurality of gaming machine
interface devices 213 such as a hopper, bill acceptor, meters,
input panels, and the like.

The technical description of these gaming machines may
be found in detail in co-pending U.S. Patent Application,
entitled, Method and Apparatus for Providing a Compart-
mentalized Game Instruction Architecture within a Gaming
Machine, Ser. No. 09/396,190, filed Sep. 14, 1999, which is
concurrently filed with the present application and is incor-
porated by reference in its entirety herein, and in co-pending
U.S. Provisional Patent Application, entitled, System and
Method for Distributing Casino Gaming. Employing Plat-
form Independent Programming and Common Communica-
tion Protocols, Ser. No. 60/153,718, filed Sep. 19, 1999,
which is also concurrently filed with the present application
and is also incorporated by reference in its entirety herein.

The computing system 201 has a mass storage device 211
for storing a set of operating system modules, a set of
gaming application modules and a set of corresponding
gaming application data files for use by the computing
system in implementing the gaming machine. The technical
description of the CD-ROM based mass storage system may
be found in detail in a co-pending U.S. Patent Application,
entitled, System and Method for Verifying the Contents of a
Mass Storage Device Before Granting Access to Computer

US 6,622,185 B1

7

Readable Data Stored on the Device, Ser. No. 09/396,821,
filed Sep. 19, 1999, which is concurrently filed with the
present application and is incorporated by reference in its
entirety herein.

Additionally, the preferred embodiment of the computing
system 201 utilizes a commercially available operating
system, such as the Linux operating system available from
RED HAT, INC. of Raleigh, N.C. The operating system is
stored upon mass storage device 211 for execution with the
main processing module to provide device driver support for
the peripheral devices used to implement the system.

FIG. 3 illustrates computing system used to implement a
gaming machine with an IIOB module according to one
possible embodiment of the present invention. A computer
controlled gaming machine needs to provide a digital control
interface between a set of game specific user interface
modules 302 and the computing system executing the game
application modules within the main processing module
303. The gaming machine user interface modules includes a
hopper to return winnings to a player, a coin, bill, and credit
card input module to accept funds for wager on the game
outcome, a set of user inputs, and one or more display
devices to interact with a player. The gaming machine needs
to respond to a change in the state of any of these interface
signals 341 between the game machine user interface mod-
ules 302 and application modules executing within the main
processing module 303 as quickly as possible.

To ensure the quickest possible response to a change in
state of one of the interface signals 341, an intelligent 10
interface module (ITOB) 310 is used to quickly capture the
change in state of the signal and transmit this information to
the gaming application modules in the main processing
module 303. The IIOB module 310 has a programmable
controller 313 which performs the necessary operations to
sense the change in state of the interface signals 341, to
debounce the interface signals 341 n order to detect only one
state change in response to an external act of a game player,
and to generate the necessary interrupt signal 305 to the
main processing module 303 that a change in the state of the
interface signals has occurred. The IIOB module also has a
dual port memory block 312 to provide the interface
between the IIOB module 310 and the main processing
module 303 and an external interface module 311 to provide
an electrical interface between the IIOB module 310 and the
gaming machine user interface modules 302.

In the preferred embodiment, the gaming application
modules have been developed using a platform independent
programming environment in order to support both a rapid
and efficient gaming application module development pro-
cess and a support game application execution within a
distributed processing environment. To satisfy these system
requirements, the gaming application modules are devel-
oped as Java classes within a framework of a Java applica-
tion or applet using the JAVA programming language devel-
oped and licensed by SUN MICROSYSTEMS, of Mountain
View, Calif.

Java applications and applets are semi-compiled byte-
code programming modules that are interpreted by a Java
Virtual Machine (JVM). The JVM is itself an application
programming module that executes within the main pro-
cessing module 303. The JVM loads the byte-code repre-
sentation of the Java application or applet into its data
memory, parses the code, and interprets the various opera-
tions.

The IIOB module 310 overcomes this limitation within
Java programming environment through the use of the

10

15

20

25

30

35

40

45

50

55

60

65

8

programmable control processor 313. The control processor
313 generates an IIOB State packet 801 that represents the
current state of the interface signals 341 and provides them
to the main processing module 303 through an IIOB queue
321. The I1OB state packet 801 format is illustrates in FIG.
8 and possesses a time stamp field 805 and a plurality of data
bytes 806-808. Each bit within the data bytes represents the
current state of the interface signals 341.

In the preferred embodiment, the time stamp field is
actually filled by the gaming application module when the
IIOB state packet is read from the IIOB input queue 321.
This operational procedure was made to simplify the design
of the IIOB module 310 as it does not require access an
accurate time clock. This operational procedure also reduces
processing overhead for the interrupt service routine as it
also does not need to obtain access to a time clock. The
gaming application modules are not time sensitive and may
accept some uncertainty as to the exact time the external
interface signal 341 changed state while continuing to
function correctly. In alternate embodiments in which the
application requires a more accurate indication of exactly
when the external interface signal changed state, the time
stamp field 805 may be filled by either the IIOB module 310
or the interrupt service routine without deviating from the
spirit and scope of the present invention.

The operation of the IIOB module 310 will ensure that an
IIOB data packet 801 is generated for each state change on
every interface signal 341 during the operation of the
gaming machine. When more than one interface signal state
change occurs before the gaming application has time to
receive and process the prior state change, a plurality of
IIOB state packets 331-333 are generated and stored in the
IIOB input queue 321. The plurality of IIOB state packets
331-333 are processed in the order in which the state
changes occur. As a result, the operation of the gaming
machine will correctly occur even though the Java based
gaming applications may be incapable of receiving and
processing these signal state changes in a real-time manner.
Because the IIOB state packets 331-333 possess a repre-
sentation for every external interface signal 341, the gaming
application modules may determine the exact occurrence of
all signal state changes as they occur during the operation of
the game.

FIG. 4 illustrates in detail an IIOB module in detail
according to yet another embodiment of the present inven-
tion. The IIOB module 401 includes a set of programmable
input and output interface logic 413 to electrically intercon-
nect a plurality of gaming machine user interface modules
302 to the IIOB module 401. The programmable I/O inter-
face 413 is constructed from a set of logic which allows all
of the interface signals 341 to be defined as either input or
output signals. The operation of each interface signal 341 is
defined by the contents of a set of interface control registers
414 that are loaded from the main processing module 303
before the game begins. This interface logic is constructed
using [ZC protocols, a well-defined industry standard.

The IIOB module 401 also includes a dual-ported
memory block 412 coupled on one port to the system
interface to permit the main processing module 303 to read
and write data to and from the IIOB module 401. The other
port on the dual-ported memory block 412 is coupled to the
control processor 410 and the programmable I/O interface
413. The IIOB control processor 410 is an Intel 8051 single
chip microcontroller in the preferred embodiment. Of
course, any programmable control processor may be used in
the IIOB module without deviating from the spirit and scope
of the present invention. The control processor 410 receives

US 6,622,185 B1

9

commands from the main processing module 303 in the
form of command packets that are written into the dual-
ported RAM block 412 through the system bus interface
411. The control processor 410 will read, decode, and
process these commands to configure and perform the [IOB
module operations.

The control processor 410 configures the operation of the
programmable I/O interface 413 by accepting a configura-
tion data packet from the main processing module 303
through the dual-ported RAM block 412. The control pro-
cessor 410 will read the configuration data packet from the
RAM block 412 and load the appropriate values into the
interface control registers 414. This operation occurs before
the control processor 410 begins monitoring the interface
signals 341 for state changes.

During the operation of a gaming application module
within the main processing module 303, the IIOB control
processor 410 monitors the state of interface signals 341.
When the control processor detects a state change in one or
more of these interface signals, the control processor per-
forms a sequence of operations. First, the control processor
gains control over the IIOB control semaphore 441. The
semaphore 441 is used by both the control processor and the
main processing module 303 to gain exclusive control over
the IIOB module 401. Once the control processor 410 has
control over the IIOB module 401, the control processor
stuffs the current state of the interface signals 341 into the
appropriate bits within the IIOB data packet 801. The IIOB
data packet is written into the dual-ported RAM block 412
to permit access by the main processing module 303. Once
the IIOB data packet 801 is stored in the RAM block 412,
the control processor 410 releases the IIOB control sema-
phore 441 and asserts an [IOB interrupt signal 305.

The IIOB interrupt signal 305 immediately causes an
interrupt service routine to begin executing within the main
processing module 303. The interrupt service routine will
take the IIOB control semaphore, then copy the IIOB data
packet 801 from the IIOB dual-port RAM block 412 into the
IIOB input queue 321, release the IIOB control semaphore,
and then transmit an interrupt acknowledgment signal to
permit the control processor 410 to write subsequent data
state packets to the dual-port RAM 412.

When the main processing module 303 wishes to change
the state of an output interface signal 341, the main pro-
cessing module 303 transmits a command data packet to the
IIOB control processor 410 through the RAM block 412.
The command packet will specify the interface signal to be
altered, the length of any pulse being transmitted on the
interface signals, and any other command data needed to
specify the signal state change. Once the command is stored
in the RAM block 412, the control processor will read and
decode the command packet. The control processor 410 will
cause the interface signal 341 to change as specified in the
command packet. The definitions of these commands and
interface signals are defined in the IIOB command and
signal definition sections recited below.

FIG. 5 illustrates an operational flow diagram for a
gaming application module utilizing an IIOB module
according to another embodiment of the present invention.
The gaming applications modules begin by executing an
initialize module 502 in which a gaming application module
is launched and its respective components are initialized.
Next, a Configure IIOB module 503 is performed to con-
figure the programmable I/O interface 413 on the IIOB
module 401. As discussed above, a configuration data file is
written into the RAM block 412 in the IIOB module 401 for
use by the control processor 410 to load the interface control
registers 414.

10

15

20

25

30

35

40

45

50

55

60

65

10

Once all of the system components are configured, a Start
Module 504 is executed to synchronize the start of the
operation of the IIOB interface signal monitoring with the
beginning of the operation of the gaming application mod-
ule. The Start module 504 transmits a signature check packet
to the IIOB module 401, to verify the contents of the IIOB’s
program ROM, part of the Control processor/Program
Memory 410. The Start module then compares the signature
to one calculated by the Start module from an image of the
correct IIOB program stored on the Mass Storage Device
211. If the signature is correctly verified, the Start module
transmits a start command packet to the [IOB module 401 to
inform the control processor 410 that the game application
processing has begun.

The gaming application modules now enter a main pro-
cessing loop defined by a Poll IIOB Queue module 505,
Process Input module 506, and Fatal Error test operation
507. In the Poll IIOB Queue module 505, the main process-
ing module checks the IIOB input queue 321 to the presence
of an IIOB state data packet 801. If a data packet 801 is
present, the Process Input module 506 retrieves the IIOB
state data packet 801 and performs the appropriate operation
based upon the nature of the external interface signals 341
state change represented in the IIOB state data packet 801.
As stated above, the Process Input module 506 will fill the
time stamp field 805 in the IIOB state data packet 801 as part
of its operation.

If no IIOB state data packet 801 is found in the IIOB input
queue 321, the Process Input module will be in an idle state
and be able to perform other operations. For example,
between various plays of a video slot machine, a significant
amount of idle time may occur as players pause in their
playing. During these periods of time, the gaming applica-
tion modules may wish to display advertisements and other
messages not directly related to the playing of a slot game.
These advertisements may attempt to either induce players
to wish to play the game or induce players to patronize other
parts of the gaming establishment in which the gaming
machine is located. The Fatal error test operation 507
provides a logical manner to halt the operation of the gaming
application module based upon an occurrence of various
external interface signals 341.

FIG. 6 illustrates an operational flow diagram for a control
processor within an IIOB module according to yet another
possible embodiment of the present invention. The IIOB
module 401 begins its operation by executing a Configure
IIOB module 602. In the Configure IIOB module 602, the
IIOB control processor 410 receives a configuration data
packet to configure the operation of the programmable I/O
interface 413 as discussed above at length. Once configured,
the IIOB module waits to receive a start command packet
from the main processing module 303. This start command
packet causes the Start IIOB module 603 to execute to
synchronize the operation of the IIOB control processor 410
with the operation of the gaming application module.

The IIOB module 401 next executes the Monitor 10 Ports
module 604. In this module 604, the control processor 410
is monitor the external interface signals 341 for a change in
state. The control processor is also monitoring the system
bus interface 411 for receipt of an output signal command
from the main processing module 303. Upon the occurrence
of either of these events, the control processor 410 deter-
mines which operation is to be performed in a Input Change
test operation 610.

If an input signal change has occurred, the control pro-
cessor 410 performs the Generate IIOB Packet module 605

US 6,622,185 B1

11

to generate the IIOB state data packet 801 and store it within
the IIOB dual ported RAM block 412. The Control proces-
sor next generates an IIOB interrupt signal 305 in the
Interrupt module 606 and awaits and acknowledgement
signal. The control processor will remain waiting for the
acknowledgement signal in operation 607 before returning
to the Monitor IO Ports module 604.

When an output signal command is received from the
main processing module 303, the Input Change test opera-
tion will fail. The action will cause the Receive Command
module 611 to be performed. The IIOB control processor
will receive, read, and decode the command received from
the gaming application module. Once decode, the control
processor 410 generates an appropriate change in an output
signal in a Generate Signal Command module 612. The
control processor 410 will next execute an IIOB Ack Com-
mand module 613 to signal the main processing module 303
that the output signal has been generated. The control
processor now returns to the Monitor IO Ports module 604
to await the next signal event.

FIG. 7 illustrates an operational flow diagram for an
interrupt service module for responding to an interrupt
generated by an IIOB module according to yet another
possible embodiment of the present invention. The IIOB
interrupt signal 305 immediately causes an interrupt service
routine to begin executing within the main processing mod-
ule 303 in the interrupt module 702. The interrupt service
routine will copy the IIOB data packet 801 from the IIOB
dual-ported Ram block 412 into the IIOB input queue 321 in
a packet transfer module 703 and then transmit and interrupt
acknowledgement signal to permit the control processor 410
to continue to monitor the interface signals 341 in an
acknowledgement module 704.

In a preferred embodiment, the IIOB is configured to
support a wide variety of gaming machines as discussed
below. The I/O board remains active during alarm
conditions, except at shutdown or when the alarm is caused
by a failure of the IIOB. If the IIOB fails to respond correctly
to regular system polls at any time, a reset operation is
performed and an alarm declared. If the IIOB to respond to
the reset, the alarm may only be cleared by re-booting; such
a failure most likely indicates a hardware defect.

The protocol for communication between player/dealer
station motherboards (with associated system software) and
the IIOB is accomplished via data transfers within one of 7
segments of dual-port RAM on the IIOB, visible to the ISA
bus on the motherboard. Total RAM is 4 KB. The IIOB
issues a programmable interrupt (IRQ 6, 7 or 9) whenever it
has completed a write operation. In the current
implementation, a PAL is used to fix the interrupt at IRQ 7.
Dual-port memory begins at ISA address 0xb0000 and
extends to OxbOfff. This is followed by 8 bytes for sema-
phores at 0xb1000 through Oxb1007. A hardware reset byte
is located at 0xb1010.

At power-up, or other hardware reset, the processor on the
IIOB will attempt to lock semaphore 0. Regardless of
whether it is successful, the IIOB will write the string
“IIOB” into the first four bytes of dual-port memory and
attempt to release semaphore 0. The host will then attempt
to lock semaphore 0. If semaphore 0 cannot be locked by the
host, a reset will be issued by writing 0x01 to byte 0xb1010
on the board and the sequence will begin again. After the
host has locked semaphore 0, all bytes will be cleared and
the string “HOST” will be written to the first four bytes of
dual-port memory. The IIOB then waits for the configuration
command, followed by a start command (see Commands,

10

15

20

25

30

35

40

45

50

55

60

65

12

below). The host must wait a minimum of 10 ms before
attempting to lock semaphore 0 after a power-up or other
hardware reset. When the host issues a hardware reset, the
reset must be cleared by writing 0x00 to byte 0xb1010
before the IIOB processor can act.

Semaphore 0 controls all access to dual-port memory. No
ISA memory location from 0xb0000 through 0xb1000
should be read or written by the host or the IIOB processor
unless semaphore 0 is locked by that party.

There are 4 segments (0-3) of 512 bytes each for Serial
I/0O. Each of the segments 0-3 is associated with a specific
serial port. If byte 0 of any serial port segment is set to
anything other than 0, a serious tilt has occurred and the host
will shutdown and reset the IIOB.

Bits are set in byte 0 of memory segment 4 (see Input
Register, below) whenever the IIOB transfers data. Bits are
set in byte 0 of memory segment 5 (see Output Register,
below) whenever the host transfers data. Note that the [IOB
may not be able to accept all host data at once, particularly
serial transfers and so will not necessarily clear all flag bits
set by the host.

The fifth segment (4) of 12 bytes is associated with
parallel input from the IIOB (Input Registers). Byte 0 is a
status byte indicating which of the seven segments of RAM
have been updated by the IIOB since the last interrupt (bit
0 represents serial port 0, and so on, with bit 6 representing
segment 6 (Command Register, below). Byte 1 indicates
which areas within segment 4 have been updated by the
IIOB since the previous interrupt; bytes 0—1 are cleared by
the system when they have been read. Byte 2 contains
separate status bits, representing hopper empty, hopper
jammed, hopper tilt, and fatal conditions for AC power-
down detected, incorrect signature received, and 12C bus
error Byte 3 represents horizontal movement of the
trackball, with the high-order bit (Hex 80) representing
leftward movement. Byte 4 represents vertical movement of
the trackball, with the high-order bit (Hex 80) representing
downward movement. Byte 5 indicates which of six 8-bit
input ports contain changed data. Bytes 6—11 represent the
48 input lines from the IIOB. When an interrupt is received
by the system, semaphore 0 is set by the system, bytes 01
are copied by the system and all bits in bytes 01 are cleared.
The interrupt remains masked until all changed data has
been transferred. The IIOB should not change data in any
segment (or subsection) whose bit was high in bytes 0-1
until the interrupt is reset by writing Hex 00 to the hardware
reset byte (0xb1010) on the IIOB. The IIOB must success-
fully lock semaphore 0 and set bits high for the next transfer,
before issuing another interrupt. The system never sets bits
in Byte 0 of segment 4; it only clears them. The system will
also clear bits representing pulse lines, after transferring the
data.

The sixth segment (5) of 66 bytes is associated with
parallel output from the system (Output Registers). Some
areas within this segment may be modified by the IIOB, as
well. Byte 0 indicates any of the seven memory segments
(e.g.: serial output, Command Register) that have been
updated by the system. Byte 1 indicates areas within seg-
ment 5 that have been modified by the system; bits in these
bytes are cleared by the IIOB when the data has been
processed. Byte 2 is set high to order the IIOB to dispense
a coin; this byte is to be cleared by the IIOB; an interrupt is
issued by the IIOB when this byte goes to 0 (coin dispensed).
Byte 3 controls the attributes of the seven-segment LED
display (steady or flashing); bytes 4-11 indicate which
character (see Codes, below) is to be displayed in each of 8

US 6,622,185 B1

13

individual cells. Bytes 12—15 contain one bit each for the 32
output line status bytes (the byte assigned to the hopper
motor is ignored by the system); these are set by the system
and cleared by the IIOB; no interrupt is issued by the IIOB
when such a flag is cleared. Bytes 18—49 are status bytes for
the individual lines, to allow for multiple states (e.g.: a lamp
line may be on, off or blinking—see Codes, below). Bytes
corresponding to pulse lines (e.g.: hard meter lines) are
cleared by the IIOB after the pulse has been sent and the
inter-pulse interval has begun and an interrupt is issued (as
for the coin dispensed byte). Bytes 50—65 are reserved. The
ITOB does not set any bits in bytes 4—11 of segment 5 when
a pulse line or byte 2 is cleared; however it should set bit §
in byte 0 of segment 4.

The seventh segment (6) of 512 bytes is used by the
system for writing configuration and control packets to the
IIOB (Command Register). If the corresponding bit is set in
segment 5, the packet in segment 6 should always be
processed first (it may be a shutdown or reset command).
Dual Port Memory Map
Serial Port 0

Byte 0: Serial port 0 status byte from UART (tilt if not 0)
Byte 1: reserved
Bytes 2-3: Data byte count (Intel byte order: byte 0 is
least significant byte)
Bytes 4-511: Data
Serial Port 1
Byte 512: Serial port 1 status
Byte 513: reserved
Bytes 514-515: Data byte count (Intel byte order: byte 0
is least significant byte)
Bytes 516-1023: Data
Serial Port 2
Byte 1024: Serial port 2 status
Byte 1025: reserved
Bytes 1026-1027: Data byte count (Intel byte order: byte
0 is least significant byte)
Bytes 1027-1535: Data
Serial Port 3

Byte 1536: Serial port 3 status
Byte 1537: reserved

Bytes 1538-1539: Data byte count (Intel byte order: byte
0 is least significant byte)

Bytes 1540-2047: Data
Parallel Inputs

Byte 2048: IIOB segment status
Bit 0: segment 0 changed
Bit 1: segment 1 changed
Bit 2: segment 2 changed
Bit 3: segment 3 changed
Bit 4: segment 4 changed
Bit 5: segment 6 changed
Bit 6: segment 6 changed

Byte 2049: Segment 4 status
Bit 0: IIOB status changed
Bit 1: trackball delta changed
Bit 2: input lines changed

Byte 2050: IIOB status
Bit 0: fatal error (reset please)
Bit 7: hopper timeout
Bit 6: coin-out sensor on too long (jam or fishing)
Bit 5: coin-out sensor went on with hopper motor off

Byte 2051-2052: Trackball delta

15

20

25

30

35

40

45

50

w

5

[
o

14

Byte 2053: Input port status (note: hopper sensor is
ignored by the system)
Bit 0: port 0 changed
Bit 1: port 1 changed
Bit 2: port 2 changed
Bit 3: port 3 changed
Bit 4: port 4 changed
Bit §: port 5 changed
Byte 2054-2059: Input lines (note: hopper sensor is
ignored by the system)
Parallel Outputs
Byte 2060: System segment status
Bit 0: segment 0 changed
Bit 1: segment 1 changed
Bit 2: segment 2 changed
Bit 3: segment 3 changed
Bit 4: segment 4 changed
Bit 5: segment 5 changed
Bit 6: segment 6 changed
Byte 2061: Segment 5 status
Bit 0: dispense coin
Bit 1: seven-segment displays
Bit 2: output port lines
Byte 2062: Dispense coin
Bit 7: reset hopper
Bits 0—6: number of coins to dispense (currently 1 at a
time)
Bytes 2063-2071: Seven-segment display attributes and
characters
Byte 2072-2075: Output line status (note: hopper motor
is ignored by the system)
Bit 0: line 0 changed
Bit 1: line 1 changed
Bit 31: line 31 changed

Byte 2076-2077: reserved
Byte 2078-2109: Output lines (see Codes, below)

Byte 2110-2125: reserved
Commands

Byte 2126: Command type (see Commands, below)

Byte 2127: reserved

Bytes 2128-2129: Command byte count (Intel byte order:

byte 0 is least significant byte)

Bytes 2130-2637: Command data

Bytes 2638-4095: reserved

Bytes 4096—4103: Semaphores

Bytes 4104—4111: reserved

Byte 4112: Hardware reset (see Codes, below)
Framing

Each serial packet consists of a one-byte status code,
followed by a reserved byte, followed by a 16-bit (Intel
format), unsigned integer for length of the data to follow.
This is followed by the data. Printer data should be passed
to the printer port as it is received by the IIOB. Note that
Online Accounting System protocols will be handled off the
IIOB.Command packets consist of a command type, fol-
lowed by a reserved byte, followed by a 16-bit (Intel
format), unsigned integer for length of the data to follow.
This is followed by the command. The framing conventions
apply only to segments 0-3 and 6 of memory. Other traffic
is controlled by the segment status bits in segments 4 and 5.
Codes

Codes are all one-byte integers, specifying the device to
receive the message within a frame. Additional codes are
provided for the IIOB itself, lamp switches (to indicate

US 6,622,185 B1

15

blinking or steady) and LED displays to indicate data and
display characteristics.

16

Codes, above) in reply with no further action by the IIOB.
The structure of a configuration packet follows:

5
Device Code Meaning Byte 0: Hex 01 (Configuration)
Bytes 1-144: Input lines (3 bytes each)
Device Codes Bytes 145-288: Output lines (3 bytes each)
Byte 289: Trackball
Input/Output line Hex ff Unused line Byte 290: Seven-segment display
Input/Output line Hex 00 Any line but hopper lines 10 Bytes 291-317: Serial ports
Hex 80 blink ACK is an echo; NACK is Hex 81 in byte 0
Hex 00 off Unused Input/Output line
Hex 01 on
Hex 02 Send pulse Byte 0: Hex ff
Hopper sensor line (input) Hex 01 Byte 1: reserved
Hopper motor line (output) Hex 02 Byte 2: reserved
Check Signature Hex 03 Command (from system) 15
LED
Hex 80 blink (attribute) For .all Input/QutPut lines (cher than un}lsed c.)nes), a0
Hex 01-0f intensity (attribute) (zero) in Byte 1 indicates a switch (on/off) line, with Byte 2
Hex 80 (period for any digit byte) indicating a time gap for blinking. For other lines, if the high
Hex 00-09 digit 2 bit in Byte 1 is 0, pulses should pull low (“normal”); if the
Hex Oa - (dash) . y. > P P. ! >
Hex 0b E (ee) bit 0x80 is set, pulses should be high and the line should be
Hex Oc H (aitch)
ulled low between pulses.
Hex 0d L (ell) P P
Hex Oe P (pee)
Hex 0Of blank 25
Shutdown Hex 00 Command (from system) - -
Configure Hex 01 Command (from system) Input/Output line other than hopper lines
Start Hex 02 Command (from system)
Hardware reset byte Byte 0: Hex 00
Byte 1: 1-127 (minimum valid pulse length in 10 ms intervals)
Hex 00 Reset interrupt Byte 2: 1-127 (minimum interval between repeats in 10 ms intervals)
Hex 01 Reset [IOB 30 Hopper sensor line for parallel interface hopper pulse input)
Byte 0: Hex 01
Commands Byte 1: 1-127 (minimum valid pulse length in 10 ms intervals)
For all commands, the expected nominal return code }Blyte % 1;1217_ (mémmum ﬁnlte_r"tal fbetwﬁen rep(eatf 1{1]1(10 ms %?tig"als)
. opper motor line for parallel interface hopper (acts like a switc
(ACK) is the same as the command. All commands must be 35 EP b PP
ACKed; the ITOB should set the required segment 4 flag and Byte 0: Hex 02
interrupt after sending a response. Error responses (NACK) Byte 1: 0
use the same code as the command, but with the high-order ?yteki: I reserved
. . . rackba
(Hex 80) bit set. If a command is outstanding for over 100 —_—
ms, the system will attempt a hardware reset of the board. 40 Byte 0: timeout in 10 ms intervals for trackball update; O indicates no

Shutdown

Orderly shutdown request from system (not NMI power-
fail). The main difference between this and an emergency
power-fail shutdown is that the system issues it. The IIOB
should finish dispensing any coin in progress and flush serial

45
outputs.
Byte 0: Hex 00 (Shutdown)
Byte 2-3: 0 50
ACK is an echo; NACK is Hex 80 in byte O.
Start
Begin normal processing. This must be given to the IIOB
before any command other than Configure is sent to the 55
IIOB, or any data is sent.

Byte 0: Hex 02 60
Byte 2-3: 0

ACK is an echo; NACK is Hex 82 in byte O.

(Start)

Configuration

Configuration should be the first command received, after
a power-up, Shutdown or Reset. Any other packet sent to the
IIOB should receive only a NACK Configuration (see

65

trackball.
LBD (seven-segment display)

Byte 0: Interval in 10 ms increments for blinking display; 0 indicates no
display.

Serial Port

Byte 0: timeout for buffer send (10 ms intervals); O indicates port is
unused.

Byte 1: buffer size (IIOB sends a data packet whenever the timeout is
exceeded and the buffer is not empty, or when the buffer is full,
regardless).

Byte 2: standard bps rate code for UART (see UART Bits per Second,
below)

Byte 3: number of start bits (0-2); always == 1 in current
implementation

Byte 4: number of stop bits (0-2); always either 1 or 2 in current
implementation

Byte 5: number of data bits (5-8)

Byte 6: parity (0 == none; 1 == odd; 2 == even).

Byte 7: reserved

UART Bits per Second

Bits per second on each serial port (UART) are deter-
mined by an 8-bit code. The high-order bits 7-4 correspond
to CSRA[7:4] on the UART; the next bit (3) corresponds to
ACR[7] on the UART; the low-order 3 bits 2-0 correspond
to MRO[2:0] on the UART. Note that BpS rates above 38.8
are only available in Extended Mode (MRO!=0). The speci-
fication states that MRO[2:0] MUST be equal to 0.

US 6,622,185 B1

17
MRO[0] = 0 MRO[0] = 0
CSRA[7:4] ACR[7] = 0 ACR[7] = 1
0000 50 75
0001 110 110
0010 134.5 134.5
0011 200 150
0100 300 300
0101 600 600
0110 1200 1200
0111 1050 2000
1000 2400 2400
1001 4800 4800
1010 7200 1800
1011 9600 9600
1100 38.4K 19.2K

Supported devices, as discussed above comprise:

1. electromechanical meters as required; these are defined

by a subclass of powerpit.devices.MeterModel.

2. internal RAM-based meters as required; these are

defined by a subclass of powerpit.devices.MeterModel.

3. file-based or binary, NVRAM logs for recovery and
system audit.

. generic serial printers.

. CC-40 and CC-46 coin validators.

. LED 4-digit displays.

. IGCA patented trackball.

. CVM (GPT) serial bill validators.

. external lamps for service, change, player selection;
these are defined in a subclass of powerpit.devices.Can-
delabra.

10. player buttons and associated indicator lamps; these
are defined in a subclass of powerpit.devices.Button-
Panel.

11. generic hoppers with an optical sensor for coin-out
and overflow.

12. generic switches for security alarms.

13. JCM (World Bill Validator) serial bill validators.

A wide range of Creative Labs SoundBlaster compatible
boards may be supported. The ISA pnptools package is used
to configure Plug-N-Play cards. If the commercial version of
Open Sound System is installed, the OSS utilities are used.

On Linux, either .au (Sun audio format) or .wav (MS
Windows audio format) sound files may be used with the
JAudioClip implementation of the java.applet.AudioClip
interface. Sun audio files may be used for testing with the
JDK only, as the Java Runtime Environment does not
support them.

Game-specific display devices (e.g.: stepper motors,
tower video subsystem for games such as Lightning Strike
Roulette) may be configured and registered with the I/0
board by the game loop, rather than the station module.
Registration is performed by the game loop using the
GameApplet::register ()method.

The primary duty common to all game loops is to con-
tinually call a poll() routine, implemented in both BaseG-
ame and GameApplet base classes, which polls the station
software for device messages including alarms and in the
case of a multi-player game for network messages from the
remote partners. Whenever poll() is called, it should be
followed by a call to nextMessage(), which retrieves the
polled data in a standard system message packet, derived
from powerpit.messages.Message.

In the case of an audit check event, the meters must be
cleared by entering audit mode, and opening the logic cage;

O 00 N N B

10

15

20

25

30

35

40

45

50

55

60

65

18

this causes a RAM__CLEAR event to be logged. An audit
check event occurs whenever credit is not equal to the sum
of cash-in plus cumulative win minus cash-out, minus
cumulative bet, minus current bet. Current bet is added to
cumulative bet at the end of each game; the audit check is
performed at the beginning of the game and each time a bet
is placed.

RAM corruption or any change in the configuration
causes a RAM/Version check event to occur. In the case of
a single player game (e.g.: Storybook Fantasy), or player
station for a multi-player game (e.g.: BJ Blitz Blackjack) the
event is cleared as with the audit check event above. For the
dealer station in a multi-player game, the alarm is cleared by
opening the logic door.

An audit-check tilt may only be cleared by turning the
attendant key to its “on” position and opening the logic door
to clear the meters; a ram-clear event is logged at this time.
On multi-player dealer stations, the attendant key is not
required; opening the logic cage clears RAM and restores
game function.

A hopper, bill validator or IO board tilt of any kind stops
the game as with an open door. These tilts may only be
cleared by opening at least one door and then closing all
doors.

Any door open results in a tilt as well as hand-pay-
required or a failed audit check. In multi-player games, a
dealer tilt will disable all player stations as well. A power-
down alarm results in the shutdown of the station that
declared it. In multi-player games, a dealer power-down will
result in a shutdown by the player stations as well.

On graphical player stations, if no hand-pay alarm is in
force, turning the attendant key to the “on” position causes
the station to be disabled as for an alarm. Pressing the
cashout key cycles from one data set to the next; pressing the
attendant key pages through the current data. Opening the
logic door clears the current log and in the case of clearing
the meters enters a “Ram cleared” alarm in the event log.
Clearing the meters in audit mode is the only way for game
play to proceed after an audit check alarm is raised. Data is
displayed or cleared by powerpit.mains.audit.Audit; an
instance of this class is owned by the game applet on player
stations (only). Audit is invoked by GameApplet::audit().

RAM based meters are updated immediately as credits are
transferred, and the resulting values are logged. Electrome-
chanical meters are updated asynchronously, until all deltas
have been added; the “unrolled” amount is logged each time
the meter is incremented for power-fail recovery.

In the case of game-play, credits are transferred to an
interim bet meter rather than directly to the cumulative bet
(Nevada coin-in) meter. At the end of the game cycle, these
credits are returned to the credit meter in the event of a tilt,
or then added to the cumulative bet meter. At this time,
credits paid by the game are also added to the cumulative
won meter. At shutdown, the game invokes the destroy()
method. This causes a flag to be set, indicating that shut-
down is in progress, and launches a Thread that is an
instance of powerpit.mains.Stopper to complete shutdown
processing. This Thread stops the running game loop and
issues a shutdown command to the local station. If this is a
dealer station, the shutdown command is relayed to the
remote player stations.

The foregoing description of the exemplary embodiment
of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It is intended that the scope of the

US 6,622,185 B1

19

invention be limited not with this detailed description, but
rather by the claims appended hereto.

What is claimed is:

1. A method for providing real-time external signals to a
platform independent programming environment executing
upon a computing system, the computing system having an
input packet queue, a main processing module, and an
intelligent I/O interface module, and the intelligent I/O
interface module having a control processor, a plurality of
external signal interfaces, and a dual-port RAM, the method
comprising:

detecting a change in state of at least one of the external

signals by the control processor;

generating an interface state packet containing represen-
tations of a current state of all external interface sig-
nals;

storing the interface state packet within the dual-port
RAM;

asserting an interrupt signal from the control processor to
the main processing module to indicate a presence of
the interface state packet within the dual-port RAM;
and

receiving an acknowledgement signal asserted by the

main processing module to indicate that the main

processing module has transferred the interface state

packet from the dual-port RAM to the input packet
queue.

2. The method according to claim 1, wherein the interface

state packet comprises a time stamp field and a plurality of

10

15

20

25

20

data bits organized into bytes, each of the data bits represent
the present state of each external interface signal.

3. The method according to claim 1, wherein the external
signal interfaces are programmable to permit each interface
signal to behave as an input signal and an output signal.

4. The method according to claim 3, wherein the method
further comprises:

receiving a configuration command by the control pro-
cessor through the dual-port RAM to specify an opera-
tion of the programmable external signal interfaces;
and

receiving a start command by the control processor
through the dual-port RAM to synchronize the opera-
tion of the control processor with a corresponding
operation of main processing module.

5. The method according to claim 1, wherein the platform
independent programming environment is a JAVA-based
programming environment executing on an LINUX-based
computing system.

6. A computer-readable medium having computer-
executable instructions for the method recited in claim 1.

7. A computer data signal embodied in a carrier wave
readable by a computing system and encoding a computer
program of instructions for executing a computer process
performing the method recited in claim 1.

	Bibliography
	Drawing
	Description
	Claims

